Robust HLLC Riemann solver with weighted average flux scheme for strong shock

作者: Sung Don Kim , Bok Jik Lee , Hyoung Jin Lee , In-Seuck Jeung

DOI: 10.1016/J.JCP.2009.07.006

关键词:

摘要: … direction of strong shock, the HLLC flux is switched to the Harten–Lax… We combine the HLLC and HLL schemes in a single … The modified HLLC scheme is named HLLC–HLL. It is tested …

参考文章(20)
S. J. Billett, E. F. Toro, Unsplit WAF-Type Schemes for Three Dimensional Hyperbolic Conservation Laws Springer Netherlands. pp. 75- 124 ,(1998) , 10.1007/978-94-015-9137-9_4
J. J. Quirk, An adaptive grid algorithm for computational shock hydrodynamics Cranfield Institute of Technology. ,(1991)
E. F. Toro, M. Spruce, W. Speares, Restoration of the contact surface in the HLL-Riemann solver Shock Waves. ,vol. 4, pp. 25- 34 ,(1994) , 10.1007/BF01414629
B Einfeldt, C.D Munz, P.L Roe, B Sjögreen, On Godunov-type methods near low densities Journal of Computational Physics. ,vol. 92, pp. 273- 295 ,(1991) , 10.1016/0021-9991(91)90211-3
S.J. Billett, E.F. Toro, AOn WAF-Type Schemes for Multidimensional Hyperbolic Conservation Laws Journal of Computational Physics. ,vol. 130, pp. 1- 24 ,(1997) , 10.1006/JCPH.1996.5470
James J. Quirk, A Contribution to the Great Riemann Solver Debate International Journal for Numerical Methods in Fluids. ,vol. 18, pp. 555- 574 ,(1994) , 10.1002/FLD.1650180603
Maurizio Pandolfi, Domenic D'Ambrosio, Numerical Instablilities in Upwind Methods: Analysis and Cures for the “Carbuncle” Phenomenon Journal of Computational Physics. ,vol. 166, pp. 271- 301 ,(2001) , 10.1006/JCPH.2000.6652
Amiram Harten, Peter D. Lax, Bram van Leer, On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws SIAM Review. ,vol. 25, pp. 35- 61 ,(1983) , 10.1137/1025002