Gravitational search algorithm using CUDA: a case study in high-performance metaheuristics

作者: Amirreza Zarrabi , Khairulmizam Samsudin , Ettikan K Karuppiah , None

DOI: 10.1007/S11227-014-1360-1

关键词:

摘要: Many scientific and technical problems with massive computation requirements could benefit from the graphics processing units (GPUs) using compute unified device architecture (CUDA). Gravitational search algorithm (GSA) is a population-based metaheuristic which can be effectively implemented on GPU to reduce execution time. Nonetheless, performance improvement depends strongly process used adapt into CUDA environment. In this paper, we discuss possible approaches parallelize GSA hardware CUDA. An in-depth study of efficiency parallel algorithms capability exploit performed. Additionally, comparative sequential was carried out set standard benchmark optimization functions. The results show significant speedup while maintaining quality re-emphasizes utility CUDA-based implementation for complex computationally intensive applications.

参考文章(25)
Amirreza Zarrabi, Khairulmizam Samsudin, Task scheduling on computational Grids using Gravitational Search Algorithm Cluster Computing. ,vol. 17, pp. 1001- 1011 ,(2014) , 10.1007/S10586-013-0338-8
Luca Mussi, Fabio Daolio, Stefano Cagnoni, Evaluation of parallel particle swarm optimization algorithms within the CUDA TM architecture Information Sciences. ,vol. 181, pp. 4642- 4657 ,(2011) , 10.1016/J.INS.2010.08.045
Luca Mussi, Youssef S.G. Nashed, Stefano Cagnoni, GPU-based asynchronous particle swarm optimization Proceedings of the 13th annual conference on Genetic and evolutionary computation - GECCO '11. pp. 1555- 1562 ,(2011) , 10.1145/2001576.2001786
Sourav Mallick, S.P. Ghoshal, P. Acharjee, S.S. Thakur, Optimal static state estimation using improved particle swarm optimization and gravitational search algorithm International Journal of Electrical Power & Energy Systems. ,vol. 52, pp. 254- 265 ,(2013) , 10.1016/J.IJEPES.2013.03.035
Zhang Li-ping, YU Huan-jun, HU Shang-xu, Optimal choice of parameters for particle swarm optimization Journal of Zhejiang University Science. ,vol. 6, pp. 528- 534 ,(2005) , 10.1007/BF02841760
You Zhou, Ying Tan, GPU-based parallel particle swarm optimization congress on evolutionary computation. pp. 1493- 1500 ,(2009) , 10.1109/CEC.2009.4983119
Zhihuan Chen, Xiaohui Yuan, Hao Tian, Bin Ji, Improved gravitational search algorithm for parameter identification of water turbine regulation system Energy Conversion and Management. ,vol. 78, pp. 306- 315 ,(2014) , 10.1016/J.ENCONMAN.2013.10.060
Jitendra Kumar, Lotika Singh, Sandeep Paul, None, GPU based parallel cooperative Particle Swarm Optimization using C-CUDA: A case study ieee international conference on fuzzy systems. pp. 1- 8 ,(2013) , 10.1109/FUZZ-IEEE.2013.6622514
Guang Rong, Guixia Liu, Ming Zheng, An Sun, Yuan Tian, Han Wang, Parallel Gravitation Field Algorithm Based on the CUDA Platform Journal of Information and Computational Science. ,vol. 10, pp. 3635- 3644 ,(2013) , 10.12733/JICS20102043
Esmat Rashedi, Hossein Nezamabadi-pour, Saeid Saryazdi, GSA: A Gravitational Search Algorithm Information Sciences. ,vol. 179, pp. 2232- 2248 ,(2009) , 10.1016/J.INS.2009.03.004