ON THE PROBLEM OF DISCOVERING THE MOST PARSIMONIOUS TREE

作者: Walter M. Fitch

DOI: 10.1086/283157

关键词:

摘要: The problem of discovering the most parsimonious tree is defined in terms a set linearly arrayed sequences. Simplifications are introduced to reduce total amount work including elimination uninformative positions and recognition equivalent positions. procedure can be applied any array sequences, amino acid. It shown, however, that failure convert such through genetic code, into nucleotide sequences very wasteful pertinent information. Parsimony shown as minimizes discordancies (parallel and]or back substitutions). A (a discordancy diagram) given enables one recognize when two characters (nucleotide positions) will necessitate acceptance how many, at least, unavoidable. Subtraction these unavoidable from matrix potential leads avoidable generally give least pairs taxa ...

参考文章(19)
D. Sankoff, P. Rousseau, Locating the vertices of a Steiner tree in arbitrary space Mathematical Programming. ,vol. 9, ,(1975)
Joseph B. Kruskal, On the shortest spanning subtree of a graph and the traveling salesman problem Proceedings of the American Mathematical Society. ,vol. 7, pp. 48- 50 ,(1956) , 10.1090/S0002-9939-1956-0078686-7
J. A. Hartigan, Minimum Mutation Fits to a Given Tree Biometrics. ,vol. 29, pp. 53- 65 ,(1973) , 10.2307/2529676
S. E. Dreyfus, R. A. Wagner, The steiner problem in graphs Networks. ,vol. 1, pp. 195- 207 ,(1971) , 10.1002/NET.3230010302
R. C. Prim, Shortest Connection Networks And Some Generalizations Bell System Technical Journal. ,vol. 36, pp. 1389- 1401 ,(1957) , 10.1002/J.1538-7305.1957.TB01515.X
Walter M. Fitch, James S. Farris, Evolutionary trees with minimum nucleotide replacements from amino acid sequences Journal of Molecular Evolution. ,vol. 3, pp. 263- 278 ,(1974) , 10.1007/BF01796042
P. H. A. Sneath, M. J. Sackin, R. P. Ambler, Detecting Evolutionary Incompatibilities From Protein Sequences Systematic Biology. ,vol. 24, pp. 311- 332 ,(1975) , 10.1093/SYSBIO/24.3.311
G.F. Estabrook, A general solution in partial orders for the Camin-Sokal model in phylogeny Journal of Theoretical Biology. ,vol. 21, pp. 421- 438 ,(1968) , 10.1016/0022-5193(68)90125-2
G.William Moore, John Barnabas, Morris Goodman, A method for constructing maximum parsimony ancestral amino acid sequences on a given network Journal of Theoretical Biology. ,vol. 38, pp. 459- 485 ,(1973) , 10.1016/0022-5193(73)90252-X
James S. Farris, Arnold G. Kluge, Michael J. Eckardt, A Numerical Approach to Phylogenetic Systematics Systematic Biology. ,vol. 19, pp. 172- 189 ,(1970) , 10.2307/2412452