Improvement by iteration for compact operator equations

作者: Ian H. Sloan

DOI: 10.1090/S0025-5718-1976-0474802-4

关键词:

摘要: The equation y f + Ky is considered in a separable Hilbert space H, with K assumed compact and linear. It shown that every approximation to of the form Yln = Enaniui (where {ui} given complete set an1, 1 < i n, are arbitrary numbers) less accurate than best Y2n ynbnjKui, if n sufficiently large. Specifically it chosen optimally (i.e. coefficients ani minimize Ily 11), be first iterate Ylnl i.e. Kyln then ll an II, an0. A similar result also obtained, provided homogeneous x Kx has no nontrivial solution, instead approximate solution by Galerkin or Galerkin-Petrov method. generalization forms Y3n' Y4n' . obtained further iteration valid, range dense H.

参考文章(7)
Ian H. Sloan, Error analysis for a class of degenerate-kernel methods Numerische Mathematik. ,vol. 25, pp. 231- 238 ,(1975) , 10.1007/BF01399412
Peter Linz, L. M. Delves, J. Walsh, Numerical Solution of Integral Equations Mathematics of Computation. ,vol. 29, pp. 1152- ,(1975) , 10.2307/2005757
Ian H. Sloan, B.J. Burn, N. Datyner, A new approach to the numerical solution of integral equations Journal of Computational Physics. ,vol. 18, pp. 92- 105 ,(1975) , 10.1016/0021-9991(75)90104-7
F. Smithies, N. I. Akhiezer, I. M. Glazman, Theory of linear operators in Hilbert space The Mathematical Gazette. ,vol. 50, pp. 435- ,(1966) , 10.2307/3613994
W. G., S. G. Mikhilin, K. L. Smolitskiy, Approximate methods for solution of differential and integral equations Mathematics of Computation. ,vol. 24, pp. 485- ,(1970) , 10.2307/2004505
Frigyes Riesz, Functional analysis ,(1955)
M. A. Krasnoselʹskii, Approximate Solution of Operator Equations ,(1972)