Nanoindentation behavior of high entropy alloys with transformation-induced plasticity

作者: S. Sinha , R. A. Mirshams , T. Wang , S. S. Nene , M. Frank

DOI: 10.1038/S41598-019-43174-X

关键词:

摘要: Nanoindentation of three metastable dual-phase high entropy alloys (HEAs) was performed to obtain their inherent elastoplastic deformation responses. Excellent combination hardness and elastic modulus in as-cast condition confirmed that, inherently higher strength compared other HEAs reported literature, can be attributed alloy chemistry induced phase stability. Further, 8.28 GPa combined with 221.8 GPa obtained Fe-Mn-Co-Cr-Si-Cu HEA by annealing the material, which is best hardness-modulus date from nanoindentation. On hand, although Fe-Mn-Co-Cr-Si showed lower than Fe-Mn-Co-Cr-Si-Al HEAs, former exhibited highest strain rate sensitivity, as determined tests at five different rates. The also had subtle differences incipient plasticity behavior, while retaining similar levels hardness; nanoindentation response microstructural dependence friction stir processed, annealed tensile-deformed specimens. Thus, study highlighted that achieved designing a class composition, any individual tuned enhanced properties.

参考文章(61)
Bernd Gludovatz, Easo P. George, Robert O. Ritchie, Processing, Microstructure and Mechanical Properties of the CrMnFeCoNi High-Entropy Alloy JOM. ,vol. 67, pp. 2262- 2270 ,(2015) , 10.1007/S11837-015-1589-Z
Y Ma, YH Feng, Tekalign T Debela, GJ Peng, TH Zhang, None, Nanoindentation study on the creep characteristics of high-entropy alloy films: fcc versus bcc structures International Journal of Refractory Metals & Hard Materials. ,vol. 54, pp. 395- 400 ,(2016) , 10.1016/J.IJRMHM.2015.08.010
Zhi-Ming Jiao, Sheng-Guo Ma, Guo-Zheng Yuan, Zhi-Hua Wang, Hui-Jun Yang, Jun-Wei Qiao, Plastic Deformation of Al0.3CoCrFeNi and AlCoCrFeNi High-Entropy Alloys Under Nanoindentation Journal of Materials Engineering and Performance. ,vol. 24, pp. 3077- 3083 ,(2015) , 10.1007/S11665-015-1576-0
Reza A. Mirshams, Raja M. Pothapragada, Correlation of nanoindentation measurements of nickel made using geometrically different indenter tips Acta Materialia. ,vol. 54, pp. 1123- 1134 ,(2006) , 10.1016/J.ACTAMAT.2005.10.048
Reza A. Mirshams, Padma Parakala, Nanoindentation of nanocrystalline Ni with geometrically different indenters Materials Science and Engineering A-structural Materials Properties Microstructure and Processing. ,vol. 372, pp. 252- 260 ,(2004) , 10.1016/J.MSEA.2004.01.010
D. Bufford, Y. Liu, J. Wang, H. Wang, X. Zhang, In situ nanoindentation study on plasticity and work hardening in aluminium with incoherent twin boundaries Nature Communications. ,vol. 5, pp. 4864- ,(2014) , 10.1038/NCOMMS5864
B. Poon, D. Rittel, G. Ravichandran, An analysis of nanoindentation in elasto-plastic solids International Journal of Solids and Structures. ,vol. 45, pp. 6399- 6415 ,(2008) , 10.1016/J.IJSOLSTR.2008.08.016
S. Suresh, T.-G. Nieh, B.W. Choi, Nano-indentation of copper thin films on silicon substrates Scripta Materialia. ,vol. 41, pp. 951- 957 ,(1999) , 10.1016/S1359-6462(99)00245-6
D. Catoor, Y.F. Gao, J. Geng, M.J.N.V. Prasad, E.G. Herbert, K.S. Kumar, G.M. Pharr, E.P. George, Incipient plasticity and deformation mechanisms in single-crystal Mg during spherical nanoindentation Acta Materialia. ,vol. 61, pp. 2953- 2965 ,(2013) , 10.1016/J.ACTAMAT.2013.01.055
Mao Liu, Cheng Lu, Anh Kiet Tieu, Crystal plasticity finite element method modelling of indentation size effect International Journal of Solids and Structures. ,vol. 54, pp. 42- 49 ,(2015) , 10.1016/J.IJSOLSTR.2014.11.008