The Geometry of Algorithms with Orthogonality Constraints

作者: Alan Edelman , Tomás A. Arias , Steven T. Smith

DOI: 10.1137/S0895479895290954

关键词:

摘要: In this paper we develop new Newton and conjugate gradient algorithms on the Grassmann Stiefel manifolds. These manifolds represent constraints that arise in such areas as symmetric eigenvalue problem, nonlinear problems, electronic structures computations, signal processing. addition to algorithms, show how geometrical framework gives penetrating insights allowing us create, understand, compare algorithms. The theory proposed here provides a taxonomy for numerical linear algebra provide top level mathematical view of previously unrelated It is our hope developers perturbation theories will benefit from theory, methods, examples paper.

参考文章(87)
Jane K. Cullum, Ralph A. Willoughby, Real Symmetric Matrices Lanczos Algorithms for Large Symmetric Eigenvalue Computations Vol. II Programs. pp. 11- 118 ,(1985) , 10.1007/978-1-4684-9178-4_2
David Abbott, The Biographical dictionary of scientists, Mathematicians P. Bedrick Books. ,(1986)
Mario Ahués, Françoise Chatelin, Walter Ledermann, Eigenvalues of matrices Society for Industrial and Applied Mathematics. ,(2012)
J. W. Demmel, Three methods for refining estimates of invariant subspaces Computing. ,vol. 38, pp. 43- 57 ,(1987) , 10.1007/BF02253743
S.T. Smith, Space-time clutter covariance matrix computation and interference subspace tracking asilomar conference on signals, systems and computers. ,vol. 2, pp. 1193- 1197 ,(1995) , 10.1109/ACSSC.1995.540888
J. Karhunen, Adaptive algorithms for estimating eigenvectors of correlation type matrices international conference on acoustics, speech, and signal processing. ,vol. 9, pp. 592- 595 ,(1984) , 10.1109/ICASSP.1984.1172323
Françoise Chaitin-Chatelin, Valérie Frayssé, Lectures on Finite Precision Computations ,(1996)