Nonlinear Internal Model Control using Local Model Networks

作者: M.D. Brown , G. Lightbody , G.W. Irwin

DOI: 10.1016/S1474-6670(17)43132-6

关键词:

摘要: Abstract Local Model Networks represent a nonlinear dynamical system by set of locally valid submodels across the operating range. Training such feedforward structures involves combined estimation submodel parameters and those interpolation functions. The paper describes new hybrid learning approach for local model networks that uses combination singular value decomposition second order gradient optimization. A Internal Control scheme is proposed which has important property controller can be derived analytically. Simulation studies pH neutralization process confirm excellent modelling control performance using approach.

参考文章(20)
J. J. McKeown, D. Meegan, D. Sprevak, An Introduction to Unconstrained Optimisation ,(1990)
G. Lightbody, G.W. Irwin, A novel neural internal model control structure advances in computing and communications. ,vol. 1, pp. 350- 354 ,(1995) , 10.1109/ACC.1995.529268
Manfred Morari, Evanghelos Zafiriou, Robust process control ,(1988)
K.J. Hunt, D. Sbarbaro, R. Żbikowski, P.J. Gawthrop, Neural networks for control systems: a survey Automatica. ,vol. 28, pp. 1083- 1112 ,(1992) , 10.1016/0005-1098(92)90053-I
P.E. An, M. Brown, C.J. Harris, A.J. Lawrence, C.G. Moore, Associative memory neural networks: Adaptive modelling theory, software implementations and graphical user interface Engineering Applications of Artificial Intelligence. ,vol. 7, pp. 1- 21 ,(1994) , 10.1016/0952-1976(94)90038-8
Carlos E. Garcia, Manfred Morari, Internal model control. A unifying review and some new results Industrial & Engineering Chemistry Process Design and Development. ,vol. 21, pp. 308- 323 ,(1982) , 10.1021/I200017A016
TOR A. JOHANSEN, BJARNE FOSS, Constructing NARMAX models using ARMAX models International Journal of Control. ,vol. 58, pp. 1125- 1153 ,(1993) , 10.1080/00207179308923046
E.P. Nahas, M.A. Henson, D.E. Seborg, Nonlinear internal model control strategy for neural network models Computers & Chemical Engineering. ,vol. 16, pp. 1039- 1057 ,(1992) , 10.1016/0098-1354(92)80022-2