Suitable weak solutions of the Navier–Stokes equations constructed by a space–time numerical discretization

作者: Luigi C Berselli , Simone Fagioli , Stefano Spirito , None

DOI: 10.1016/J.MATPUR.2018.09.004

关键词:

摘要: Abstract We prove that weak solutions obtained as limits of certain numerical space–time discretizations are suitable in the sense Scheffer and Caffarelli–Kohn–Nirenberg. More precisely, space-periodic setting, we consider a full discretization which θ-method is used to discretize time variable, while space variables appropriate families finite elements. The main result validity so-called local energy inequality.

参考文章(22)
H. Beirao Da Veiga, On the suitable weak solutions to the Navier-Stokes equations in the whole space Journal de Mathématiques Pures et Appliquées. ,vol. 64, pp. 77- 86 ,(1985)
Pierre Louis Lions, Mathematical topics in fluid mechanics Clarendon Press. ,(1996)
Alfio Quarteroni, Alberto Valli, Numerical Approximation of Partial Differential Equations Springer Series in Computational Mathematics. ,vol. 23, pp. 1- 544 ,(1994) , 10.1007/978-3-540-85268-1
Jean‐Luc Guermond, On the use of the notion of suitable weak solutions in CFD International Journal for Numerical Methods in Fluids. ,vol. 57, pp. 1153- 1170 ,(2008) , 10.1002/FLD.1853
James H. Bramble, Joseph E. Pasciak, Olaf Steinbach, On the stability of the L 2 projection in H 1 (Ω) Mathematics of Computation. ,vol. 71, pp. 147- 156 ,(2002) , 10.1090/S0025-5718-01-01314-X
Luigi C Berselli, Stefano Spirito, None, An elementary approach to the inviscid limits for the 3D Navier–Stokes equations with slip boundary conditions and applications to the 3D Boussinesq equations Nodea-nonlinear Differential Equations and Applications. ,vol. 21, pp. 149- 166 ,(2014) , 10.1007/S00030-013-0242-1
Luigi Carlo Berselli, Stefano Spirito, None, On the Vanishing Viscosity Limit of 3D Navier-Stokes Equations under Slip Boundary Conditions in General Domains Communications in Mathematical Physics. ,vol. 316, pp. 171- 198 ,(2012) , 10.1007/S00220-012-1581-1
L. Caffarelli, R. Kohn, L. Nirenberg, Partial regularity of suitable weak solutions of the navier-stokes equations Communications on Pure and Applied Mathematics. ,vol. 35, pp. 771- 831 ,(1982) , 10.1002/CPA.3160350604
Nicola Gigli, Sunra J.N. Mosconi, A variational approach to the Navier-Stokes equations Bulletin Des Sciences Mathematiques. ,vol. 136, pp. 256- 276 ,(2012) , 10.1016/J.BULSCI.2012.01.001
Hermann Sohr, Wolf von Wahl, On the regularity of the pressure of weak solutions of Navier-Stokes equations Archiv der Mathematik. ,vol. 46, pp. 428- 439 ,(1986) , 10.1007/BF01210782