Balanced realization and model reduction of singular systems

作者: K. PEREV , B. SHAFAI

DOI: 10.1080/00207729408929014

关键词:

摘要: The problem of balanced realization and model reduction a singular system the form E[xdot] = Ax + Bu, where E is matrix, considered. Using coordinate transformation, which can be computed by performing value decomposition E, we derive our first approach to balancing systems. second based on standard systems slow fast subsystems decomposed model. In this sense established in two steps: first, decomposing second, transformation subsystems.

参考文章(15)
W.S. Gray, E.I. Verriest, On the sensitivity of generalized state-space systems conference on decision and control. pp. 1337- 1342 ,(1989) , 10.1109/CDC.1989.70357
YI LIU, BRIAN D. O. ANDERSON, Singular perturbation approximation of balanced systems International Journal of Control. ,vol. 50, pp. 1379- 1405 ,(1989) , 10.1080/00207178908953437
K. Fernando, H. Nicholson, Singular perturbational model reduction in the frequency domain IEEE Transactions on Automatic Control. ,vol. 27, pp. 969- 970 ,(1982) , 10.1109/TAC.1982.1103037
D. Luenberger, Dynamic equations in descriptor form IEEE Transactions on Automatic Control. ,vol. 22, pp. 312- 321 ,(1977) , 10.1109/TAC.1977.1101502
E. Yip, R. Sincovec, Solvability, controllability, and observability of continuous descriptor systems IEEE Transactions on Automatic Control. ,vol. 26, pp. 702- 707 ,(1981) , 10.1109/TAC.1981.1102699
G. Verghese, B. Levy, T. Kailath, A generalized state-space for singular systems IEEE Transactions on Automatic Control. ,vol. 26, pp. 811- 831 ,(1981) , 10.1109/TAC.1981.1102763
L. Pernebo, L. Silverman, Model reduction via balanced state space representations IEEE Transactions on Automatic Control. ,vol. 27, pp. 382- 387 ,(1982) , 10.1109/TAC.1982.1102945