Suppression of limit cycles in second-order companion form digital filters with saturation arithmetic

作者: Vimal Singh

DOI: 10.1016/J.CHAOS.2006.06.079

关键词:

摘要: Abstract A condition for second-order companion form digital filters with time variant nondeterministic saturation overflow arithmetic to be free of limit cycles was previously given by Ooba. The corresponds a region which is subset the stability triangle. In present paper, invariant deterministic nonlinearities are considered. It shown that, such nonlinearities, system in whole

参考文章(46)
J.L. López, R. López-Ruiz, The limit cycles of Liénard equations in the strongly nonlinear regime Chaos Solitons & Fractals. ,vol. 11, pp. 747- 756 ,(2000) , 10.1016/S0960-0779(98)00189-1
Maoan Han, Ping Bi, Dongmei Xiao, Bifurcation of limit cycles and separatrix loops in singular Lienard systems Chaos Solitons & Fractals. ,vol. 20, pp. 529- 546 ,(2004) , 10.1016/S0960-0779(03)00412-0
Hirofumi Ohta, Yoshisuke Ueda, Unstable limit cycles in an electric power system and basin boundary of voltage collapse Chaos, Solitons & Fractals. ,vol. 12, pp. 159- 172 ,(2001) , 10.1016/S0960-0779(99)00181-2
Hongjun Cao, Zhengrong Liu, Zhujun Jing, Bifurcation set and distribution of limit cycles for a class of cubic Hamiltonian system with higher-order perturbed terms Chaos, Solitons & Fractals. ,vol. 11, pp. 2293- 2304 ,(2000) , 10.1016/S0960-0779(99)00148-4
Ji-Huan He, Periodic solutions and bifurcations of delay-differential equations Physics Letters A. ,vol. 347, pp. 228- 230 ,(2005) , 10.1016/J.PHYSLETA.2005.08.014
G. Torrini, R. Genesio, A. Tesi, On the computation of characteristic multipliers for predicting limit cycle bifurcations Chaos Solitons & Fractals. ,vol. 9, pp. 121- 133 ,(1998) , 10.1016/S0960-0779(97)00055-6
Maoan Han, Yuhai Wu, Ping Bi, Bifurcation of limit cycles near polycycles with n vertices Chaos Solitons & Fractals. ,vol. 22, pp. 383- 394 ,(2004) , 10.1016/J.CHAOS.2004.02.031