关键词:
摘要: In this chapter, we introduce a new theory called acoustic wave propagation of three-temperature fractional nonlinear generalized micropolar poro-thermoelasticity and we propose a new boundary element technique for modeling and simulation of laser-generated ultrasonic wave propagation problems of functionally graded anisotropic (FGA) structures which are linked with the proposed theory. Since it is very difficult to solve general acoustic problems of this theory analytically, we need to develop and use new computational modeling techniques. So, we propose a new boundary element technique for solving such problems. The numerical results are shown graphically to depict the effects of three temperatures on the thermal stress waves propagation. The validity, accuracy, and efficiency of our proposed theory and the technique are examined and demonstrated by comparing the obtained outcomes with those previously reported in the literature as special cases of our general study.