Multiple reference tissue method for contrast agent arterial input function estimation.

作者: Cheng Yang , Gregory S. Karczmar , Milica Medved , Walter M. Stadler

DOI: 10.1002/MRM.21311

关键词:

摘要: A precise contrast agent (CA) arterial input function (AIF) is important for accurate quantitative analysis of dynamic contrast-enhanced (DCE)-MRI. This paper proposes a method to estimate the AIF using data from multiple reference tissues, assuming that their AIFs have same shape, with possible difference in bolus arrival time. By minimizing cost function, one can simultaneously parameters and underlying tissues. The computationally efficient estimated smooth higher temporal resolution than original data. Simulations suggest this provide reliable DCE-MRI moderate signal-to-noise ratio (SNR) resolution, its performance increases significantly as SNR increase. As demonstrated by clinical application, sufficient tissues be easily obtained normal subregions segmented tumor region interest (ROI), which suggests generally applied cancer-based studies AIF. applicable general kinetic models DCE-MRI, well other CE imaging modalities. Magn Reson Med, 2007. © 2007 Wiley-Liss, Inc.

参考文章(36)
Milica Medved, Greg Karczmar, Cheng Yang, James Dignam, Thomas F. Gajewski, Hedy Kindler, Everett Vokes, Peter MacEneany, Myrosia T. Mitchell, Walter M. Stadler, Semiquantitative analysis of dynamic contrast enhanced MRI in cancer patients: Variability and changes in tumor tissue over time. Journal of Magnetic Resonance Imaging. ,vol. 20, pp. 122- 128 ,(2004) , 10.1002/JMRI.20061
David A. Kovar, Marta Lewis, Gregory S. Karczmar, A new method for imaging perfusion and contrast extraction fraction: input functions derived from reference tissues. Journal of Magnetic Resonance Imaging. ,vol. 8, pp. 1126- 1134 ,(1998) , 10.1002/JMRI.1880080519
J. Fan, J.-T. Zhang, Two‐step estimation of functional linear models with applications to longitudinal data Journal of The Royal Statistical Society Series B-statistical Methodology. ,vol. 62, pp. 303- 322 ,(2000) , 10.1111/1467-9868.00233
Fernando Calamante, David G. Gadian, Alan Connelly, Delay and dispersion effects in dynamic susceptibility contrast MRI: simulations using singular value decomposition. Magnetic Resonance in Medicine. ,vol. 44, pp. 466- 473 ,(2000) , 10.1002/1522-2594(200009)44:3<466::AID-MRM18>3.0.CO;2-M
Thomas E. Yankeelov, Jeffrey J. Luci, Martin Lepage, Rui Li, Laura Debusk, P. Charles Lin, Ronald R. Price, John C. Gore, Quantitative pharmacokinetic analysis of DCE-MRI data without an arterial input function: a reference region model Magnetic Resonance Imaging. ,vol. 23, pp. 519- 529 ,(2005) , 10.1016/J.MRI.2005.02.013
Thomas Fritz-Hansen, Egill Rostrup, Henrik B. W. Larsson, Lars Søndergaard, Poul Ring, Ole Henriksen, Measurement of the arterial concentration of Gd-DTPA using MRI: A step toward quantitative perfusion imaging Magnetic Resonance in Medicine. ,vol. 36, pp. 225- 231 ,(1996) , 10.1002/MRM.1910360209
Paul S. Tofts, Allan G. Kermode, Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magnetic Resonance in Medicine. ,vol. 17, pp. 357- 367 ,(1991) , 10.1002/MRM.1910170208
Chunming Zhang, Calibrating the Degrees of Freedom for Automatic Data Smoothing and Effective Curve Checking Journal of the American Statistical Association. ,vol. 98, pp. 609- 628 ,(2003) , 10.1198/016214503000000521
Ruediger E. Port, Michael V. Knopp, Ulf Hoffmann, Stefanie Milker-Zabel, Gunnar Brix, Multicompartment analysis of gadolinium chelate kinetics: blood-tissue exchange in mammary tumors as monitored by dynamic MR imaging. Journal of Magnetic Resonance Imaging. ,vol. 10, pp. 233- 241 ,(1999) , 10.1002/(SICI)1522-2586(199909)10:3<233::AID-JMRI3>3.0.CO;2-M