Information Criterions Applied to Neuro-Fuzzy Architectures Design

作者: Robert Nowicki , Agata Pokropińska

DOI: 10.1007/978-3-540-24844-6_47

关键词:

摘要: In this paper we present results of application information cirterions to neuro-fuzzy systems (NFS) design. The criterions come from autoregression estimation theory and are employed describe the level NFS quality. Based on method preferred size is determined. Various compared discussed.

参考文章(12)
Janusz Starczewski, Leszek Rutkowski, Interval Type 2 Neuro-Fuzzy Systems Based on Interval Consequents Physica, Heidelberg. pp. 570- 577 ,(2003) , 10.1007/978-3-7908-1902-1_87
Leszek Rutkowski, Flexible neuro-fuzzy systems : structures, learning and performance evaluation Kluwer Academic Publishers. ,(2004)
Ernest· Czoga 盿, Jacek Leski, None, Fuzzy and Neuro-Fuzzy Intelligent Systems ,(2000)
R. Nowicki, D. Rutkowska, Implication-Based Neuro-Fuzzy Architectures International Journal of Applied Mathematics and Computer Science. ,vol. 10, pp. 675- 701 ,(2000)
Rafał Scherer, Leszek Rutkowski, A Fuzzy Relational System with Linguistic Antecedent Certainty Factors Physica, Heidelberg. pp. 563- 569 ,(2003) , 10.1007/978-3-7908-1902-1_86
Frank Klawonn, Rudolf Kruse, Detlef Nauck, Foundations of neuro-fuzzy systems ,(1997)
K. Cpalka, L. Rutkowski, Flexible neuro-fuzzy systems ,(2004)
János C. Fodor, On fuzzy implication operators Fuzzy Sets and Systems. ,vol. 42, pp. 293- 300 ,(1991) , 10.1016/0165-0114(91)90108-3
J. Yen, Liang Wang, Application of statistical information criteria for optimal fuzzy model construction IEEE Transactions on Fuzzy Systems. ,vol. 6, pp. 362- 372 ,(1998) , 10.1109/91.705503