A level set method for structural topology optimization

作者: Michael Yu Wang , Xiaoming Wang , Dongming Guo , None

DOI: 10.1016/S0045-7825(02)00559-5

关键词:

摘要: … topology optimization. We represent the structural boundary by a level set model that is embedded in … area of the structure being optimized rather than the size of the volume in which it is …

参考文章(24)
G. Allaire, R. V. Kohn, Topology optimization and optimal shape design using homogenization Springer, Dordrecht. pp. 207- 218 ,(1993) , 10.1007/978-94-011-1804-0_14
George I. N. Rozvany, Structural Design via Optimality Criteria Springer Netherlands. ,(1989) , 10.1007/978-94-009-1161-1
H. A. Eschenauer, A. Schumacher, Topology and Shape Optimization Procedures Using Hole Positioning Criteria Topology Optimization in Structural Mechanics. pp. 135- 196 ,(1997) , 10.1007/978-3-7091-2566-3_4
G. Allaire, The Homogenization Method for Topology and Shape Optimization Topology Optimization in Structural Mechanics. pp. 101- 133 ,(1997) , 10.1007/978-3-7091-2566-3_3
D. Reynolds, J. McConnachie, P. Bettess, W. C. Christie, J. W. Bull, Reverse adaptivity - a new evolutionary tool for structural optimization International Journal for Numerical Methods in Engineering. ,vol. 45, pp. 529- 552 ,(1999) , 10.1002/(SICI)1097-0207(19990620)45:5<529::AID-NME599>3.0.CO;2-2
Katsuyuki Suzuki, Noboru Kikuchi, A homogenization method for shape and topology optimization Computer Methods in Applied Mechanics and Engineering. ,vol. 93, pp. 291- 318 ,(1991) , 10.1016/0045-7825(91)90245-2
Stanley Osher, James A Sethian, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations Journal of Computational Physics. ,vol. 79, pp. 12- 49 ,(1988) , 10.1016/0021-9991(88)90002-2