Robust L Estimation of Scale with an Application in Astronomy

作者: A. H. Welsh , H. L. Morrison

DOI: 10.1080/01621459.1990.10474934

关键词:

摘要: Abstract In this article, we investigate the robustness properties of a class L estimators scale and then develop robust procedures for making inferences about scale. We pay particular attention to trimmed that should perform well when underlying model is Gaussian. find versions efficient linear estimator Gaussian distribution better than standard deviation estimators. apply version astronomical data.

参考文章(25)
P. Rousseeuw, V. Yohai, ROBUST REGRESSION BY MEANS OF S-ESTIMATORS Springer, New York, NY. pp. 256- 272 ,(1984) , 10.1007/978-1-4615-7821-5_15
P. J. Bickel, E. L. Lehmann, DESCRIPTIVE STATISTICS FOR NONPARAMETRIC MODELS IV. SPREAD Springer, Boston, MA. pp. 519- 526 ,(2012) , 10.1007/978-1-4614-1412-4_45
Peter Hall, Simon J. Sheather, On the Distribution of a Studentized Quantile Journal of the royal statistical society series b-methodological. ,vol. 50, pp. 381- 391 ,(1988) , 10.1111/J.2517-6161.1988.TB01735.X
Raymond J Carroll, Helmut Schneider, A note on levene's tests for equality of variances Statistics & Probability Letters. ,vol. 3, pp. 191- 194 ,(1985) , 10.1016/0167-7152(85)90016-1
P. J. Bickel, On Some Analogues to Linear Combinations of Order Statistics in the Linear Model Annals of Statistics. ,vol. 1, pp. 597- 616 ,(1973) , 10.1214/AOS/1176342457
Elvezio M. Ronchetti, Peter J. Rousseeuw, Werner A. Stahel, Frank R. Hampel, Robust statistics: the approach based on influence functions ,(1986)
Heather L. Morrison, Chris Flynn, K. C. Freeman, Where does the disk stop and the halo begin? Kinematics in a rotation field The Astronomical Journal. ,vol. 100, pp. 1191- ,(1990) , 10.1086/115587