Bayesian parametric analytic continuation of Green's functions

作者: Michael Rumetshofer , Daniel Bauernfeind , Wolfgang von der Linden

DOI: 10.1103/PHYSREVB.100.075137

关键词:

摘要: Bayesian parametric analytic continuation (BPAC) is proposed for the of noisy imaginary-time Green's function data as, e.g., obtained by continuous-time quantum Monte Carlo simulations (CTQMC). Within BPAC, spectral inferred from a suitable set parametrized basis functions. model comparison then allows to assess reliability different parametrizations. The required evidence integrals such are determined nested sampling. Compared maximum entropy method (MEM), routinely used CTQMC data, presented approach infer whether support specific structures function. We demonstrate capability BPAC in terms an Anderson impurity (AIM) that shows generalized Kondo scenario and compare reconstruction MEM as well real-time fork tensor product state solver where no required. Furthermore, we present combination its application AIM arising ab initio treatment SrVO$_3$.

参考文章(38)
John Skilling, Classic Maximum Entropy Springer Netherlands. pp. 45- 52 ,(1989) , 10.1007/978-94-015-7860-8_3
R. K. Bryan, SOLVING OVERSAMPLED DATA PROBLEMS BY MAXIMUM ENTROPY. Springer Netherlands. pp. 221- 232 ,(1990) , 10.1007/978-94-009-0683-9_12
Anders W. Sandvik, Constrained sampling method for analytic continuation. Physical Review E. ,vol. 94, pp. 063308- ,(2016) , 10.1103/PHYSREVE.94.063308
A.V Ferris-Prabhu, D.H Withers, Numerical analytic continuation using Padé approximants Journal of Computational Physics. ,vol. 13, pp. 94- 99 ,(1973) , 10.1016/0021-9991(73)90127-7
S.F. Gull, G.J. Daniell, Image reconstruction from incomplete and noisy data Nature. ,vol. 272, pp. 686- 690 ,(1978) , 10.1038/272686A0
Antoine Georges, Gabriel Kotliar, Hubbard model in infinite dimensions Physical Review B. ,vol. 45, pp. 6479- 6483 ,(1992) , 10.1103/PHYSREVB.45.6479
Michele Filippone, Cătălin Paşcu Moca, Gergely Zaránd, Christophe Mora, None, Kondo temperature of SU(4) symmetric quantum dots Physical Review B. ,vol. 90, pp. 121406- ,(2014) , 10.1103/PHYSREVB.90.121406