Unsupervised adaptive GMM for BCI

作者: Bashar Awwad Shiekh Hasan , John Q. Gan

DOI: 10.1109/NER.2009.5109291

关键词:

摘要: … Abstract— An unsupervised adaptive Gaussian mixture model is introduced for online brain-computer interfaces (BCI). The method is tested on two BCI data sets, demonstrating …

参考文章(14)
Anna Buttfield, José del R. Millán, Online Classifier Adaptation in Brain-Computer Interfaces IDIAP. ,(2006)
Chun Sing Louis Tsui, John Q. Gan, Asynchronous BCI Control of a Robot Simulator with Supervised Online Training Intelligent Data Engineering and Automated Learning - IDEAL 2007. pp. 125- 134 ,(2007) , 10.1007/978-3-540-77226-2_14
Janez Demšar, Statistical Comparisons of Classifiers over Multiple Data Sets Journal of Machine Learning Research. ,vol. 7, pp. 1- 30 ,(2006)
Christopher M. Bishop, Pattern Recognition and Machine Learning ,(2006)
Bashar Awwad Shiekh Hasan, John Q. Gan, Sequential EM for Unsupervised Adaptive Gaussian Mixture Model Based Classifier machine learning and data mining in pattern recognition. pp. 96- 106 ,(2009) , 10.1007/978-3-642-03070-3_8
Ji Won Yoon, Stephen J. Roberts, Matthew Dyson, John Q. Gan, Adaptive Classification by Hybrid EKF with Truncated Filtering: Brain Computer Interfacing intelligent data engineering and automated learning. pp. 370- 377 ,(2008) , 10.1007/978-3-540-88906-9_47
John Q Gan, Chun Sing Louis Tsui, Comparison of three methods for adapting LDA classifiers with BCI applications Verlag der Technischen Universität Graz. ,(2008)
Bashar Awwad Shiekh Hasan, John Q Gan, Matthew Dyson, Tugce Balli, A Study via Feature Selection on the Separability of Approximate Entropy for Brain-Computer Interfaces De Montfort University. ,(2008)
Ji Won Yoon, Stephen J Roberts, Matt Dyson, John Q Gan, None, Sequential Bayesian estimation for adaptive classification international conference on multisensor fusion and integration for intelligent systems. pp. 601- 605 ,(2008) , 10.1109/MFI.2008.4648010