Hex-splines: a novel spline family for hexagonal lattices

作者: D. Van De Ville , T. Blu , M. Unser , W. Philips , I. Lemahieu

DOI: 10.1109/TIP.2004.827231

关键词:

摘要: This paper proposes a new family of bivariate, nonseparable splines, called hex-splines, especially designed for hexagonal lattices. The starting point the construction is indicator function Voronoi cell, which used to define in natural way first-order hex-spline. Higher order hex-splines are obtained by successive convolutions. A mathematical analysis this bivariate spline presented. In particular, we derive closed form hex-spline arbitrary order. We also discuss important properties, such as their Fourier transform and fact they Riesz basis. highlight approximation For conventional rectangular lattices, revert classical separable tensor-product B-splines. Finally, some prototypical applications experimental results demonstrate usefulness handling hexagonally sampled data.

参考文章(28)
R. M. Mersereau, Two-dimensional nonrecursive filter design Springer Berlin Heidelberg. pp. 11- 40 ,(1981) , 10.1007/3-540-10348-1_16
Brian A. Wandell, Foundations of vision ,(1995)
A.P. Fitz, R.J. Green, Fingerprint classification using a hexagonal fast fourier transform Pattern Recognition. ,vol. 29, pp. 1587- 1597 ,(1996) , 10.1016/0031-3203(96)00018-0
C. De Boor, K. Höllig, B-Splines From Parallelepipeds. Journal D Analyse Mathematique. ,vol. 42, pp. 99- 115 ,(1982) , 10.1007/BF02786872
M.J.E. Golay, Hexagonal Parallel Pattern Transformations IEEE Transactions on Computers. ,vol. 18, pp. 733- 740 ,(1969) , 10.1109/T-C.1969.222756
Wenzhe Li, Alfred Fettweis, Interpolation filters for 2-D hexagonally sampled signals International Journal of Circuit Theory and Applications. ,vol. 25, pp. 259- 277 ,(1997) , 10.1002/(SICI)1097-007X(199707/08)25:4<259::AID-CTA962>3.0.CO;2-9
Daniel P. Petersen, David Middleton, Sampling and reconstruction of wave-number-limited functions in N-dimensional euclidean spaces Information & Computation. ,vol. 5, pp. 279- 323 ,(1962) , 10.1016/S0019-9958(62)90633-2
R.C. Staunton, One-pass parallel hexagonal thinning algorithm IEE Proceedings - Vision, Image, and Signal Processing. ,vol. 148, pp. 45- 53 ,(2001) , 10.1049/IP-VIS:20010076