Bessel-Gauss beams

作者: F. Gori , G. Guattari , C. Padovani

DOI: 10.1016/0030-4018(87)90276-8

关键词:

摘要: Abstract A new type of solution the paraxial wave equation is presented. It encompasses as limiting cases both diffraction-free beam and gaussian beam. The propagation features this are discussed.

参考文章(29)
Max Born, Emil Wolf, Principles of Optics ,(1959)
J. Durnin, Exact solutions for nondiffracting beams. I. The scalar theory Journal of The Optical Society of America A-optics Image Science and Vision. ,vol. 4, pp. 651- 654 ,(1987) , 10.1364/JOSAA.4.000651
John T. Foley, M.S. Zubairy, The directionality of gaussian Schell-model beams Optics Communications. ,vol. 26, pp. 297- 300 ,(1978) , 10.1016/0030-4018(78)90205-5
Riccardo Pratesi, Laura Ronchi, Generalized Gaussian beams in free space Journal of the Optical Society of America. ,vol. 67, pp. 1274- 1276 ,(1977) , 10.1364/JOSA.67.001274
F. Gori, C. Palma, Partially coherent sources which give rise to highly directional light beams Optics Communications. ,vol. 27, pp. 185- 188 ,(1978) , 10.1016/0030-4018(78)90362-0
A. E. Siegman, Hugo Weichel, An Introduction to Lasers and Masers American Journal of Physics. ,vol. 42, pp. 521- 523 ,(1974) , 10.1119/1.1988127
J.D. Farina, L.M. Narducci, E. Collett, Generation of highly directional beams from a globally incoherent source Optics Communications. ,vol. 32, pp. 203- 208 ,(1980) , 10.1016/0030-4018(80)90107-8
Ari T. Friberg, Ronald J. Sudol, The Spatial Coherence Properties of Gaussian Schell-model Beams Journal of Modern Optics. ,vol. 30, pp. 1075- 1097 ,(1983) , 10.1080/713821334
E. Collett, E. Wolf, Beams generated by Gaussian quasi-homogeneous sources Optics Communications. ,vol. 32, pp. 27- 31 ,(1980) , 10.1016/0030-4018(80)90307-7
A. E. Siegman, Hermite–gaussian functions of complex argument as optical-beam eigenfunctions Journal of the Optical Society of America. ,vol. 63, pp. 1093- 1094 ,(1973) , 10.1364/JOSA.63.001093