Mixture of truncated exponentials in supervised classification: Case study for the naive bayes and averaged one-dependence estimators classifiers

作者: M. Julia Flores , Jose A. Gamez , Ana M. Martinez , Antonio Salmeron

DOI: 10.1109/ISDA.2011.6121720

关键词:

摘要: The Averaged One-Dependence Estimators (AODE) classifier is one of the most attractive semi-naive Bayesian classifiers and hence a good alternative to Naive Bayes (NB), as it …

参考文章(19)
Michael J. Pazzani, Eamonn J. Keogh, Learning augmented Bayesian classifiers: A comparison of distribution-based and classification-based approaches. international conference on artificial intelligence and statistics. ,(1999)
Mehran Sahami, Learning limited dependence Bayesian classifiers knowledge discovery and data mining. pp. 335- 338 ,(1996)
A. Azzalini, A. W. Bowman, A Look at Some Data on the Old Faithful Geyser Applied Statistics. ,vol. 39, pp. 357- 365 ,(1990) , 10.2307/2347385
Geoffrey I. Webb, Ying Yang, Non-Disjoint Discretization for Naive-Bayes Classifiers international conference on machine learning. pp. 666- 673 ,(2002)
Zijian Zheng, Geoffrey I. Webb, Lazy Learning of Bayesian Rules Machine Learning. ,vol. 41, pp. 53- 84 ,(2000) , 10.1023/A:1007613203719
Serafín Moral, Rafael Rumi, Antonio Salmerón, Mixtures of Truncated Exponentials in Hybrid Bayesian Networks european conference on symbolic and quantitative approaches to reasoning and uncertainty. pp. 156- 167 ,(2001) , 10.1007/3-540-44652-4_15
Keki B. Irani, Usama M. Fayyad, Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning international joint conference on artificial intelligence. ,vol. 2, pp. 1022- 1027 ,(1993)
Serafín Moral, Rafael Rumí, Antonio Salmerón, Approximating Conditional MTE Distributions by Means of Mixed Trees european conference on symbolic and quantitative approaches to reasoning and uncertainty. pp. 173- 183 ,(2003) , 10.1007/978-3-540-45062-7_14
Helge Langseth, Thomas D. Nielsen, Rafael Rumí, Antonio Salmerón, Maximum Likelihood Learning of Conditional MTE Distributions Lecture Notes in Computer Science. ,vol. 5590, pp. 240- 251 ,(2009) , 10.1007/978-3-642-02906-6_22