作者: Quanquan Gu , Lingxiao Wang , Xiao Zhang
DOI:
关键词:
摘要: We propose a unified framework for estimating low-rank matrices through nonconvex optimization based on gradient descent algorithm. Our framework is quite general and can be applied to both noisy and noiseless observations. In the general case with noisy observations, we show that our algorithm is guaranteed to linearly converge to the unknown low-rank matrix up to a minimax optimal statistical error, provided an appropriate initial estimator. While in the generic noiseless setting, our algorithm converges to the unknown …