A note for global existence of a two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusible attractant

作者: Jiashan Zheng

DOI:

关键词:

摘要: In this paper, we study the following the coupled chemotaxis--haptotaxis model with remodeling of non-diffusible attractant $$\left\{\begin {array}{ll} u_t=\Delta u-\chi\nabla\cdot …

参考文章(43)
Lance A. Liotta, Timothy Clair, Cancer. Checkpoint for invasion. Nature. ,vol. 405, pp. 287- 288 ,(2000) , 10.1038/35012728
Mark Chaplain, Alexander Anderson, Mathematical modelling of tissue invasion Chapman & Hall/CRC. pp. 269- 297 ,(2003) , 10.1201/9780203494899.CH10
Benoît Perthame, Transport equations in biology Published in <b>2007</b> in Basel by Birkhäuser. ,(2007)
Jiashan Zheng, Boundedness of solutions to a quasilinear parabolic–parabolic Keller–Segel system with a logistic source Journal of Mathematical Analysis and Applications. ,vol. 431, pp. 867- 888 ,(2015) , 10.1016/J.JMAA.2015.05.071
Hieber Matthias, Pruss Jan, Heat kernels and maximal lp—lqestimates for parabolic evolution equations Communications in Partial Differential Equations. ,vol. 22, pp. 1647- 1669 ,(1997) , 10.1080/03605309708821314
Youshan Tao, Boundedness in a two-dimensional chemotaxis-haptotaxis system arXiv: Analysis of PDEs. ,(2014)
Jiashan Zheng, Optimal controls of multidimensional modified Swift–Hohenberg equation International Journal of Control. ,vol. 88, pp. 2117- 2125 ,(2015) , 10.1080/00207179.2015.1038587
ANNA MARCINIAK-CZOCHRA, MARIYA PTASHNYK, BOUNDEDNESS OF SOLUTIONS OF A HAPTOTAXIS MODEL Mathematical Models and Methods in Applied Sciences. ,vol. 20, pp. 449- 476 ,(2010) , 10.1142/S0218202510004301
L Corrias, B Perthame, H Zaag, A chemotaxis model motivated by angiogenesis Comptes Rendus Mathematique. ,vol. 336, pp. 141- 146 ,(2003) , 10.1016/S1631-073X(02)00008-0