Ground states of the infinite q-deformed Heisenberg ferromagnet

作者: R. F. Werner , C. T. Gottstein

DOI:

关键词:

摘要: We set up a general structure for the analysis of ``frustration-free ground states'', or ``zero-energy i.e., states minimizing each term in lattice interaction individually. The nesting finite volume state spaces is described by generalized inductive limit observable algebras. space this system has which canonically isomorphic (as compact convex set) to zero-energy states. show that Heisenberg ferromagnets, and valence bond solid states, an abelian C*-algebra, all are translationally invariant periodic. For $q$-deformed spin-$1/2$ ferromagnet one dimension (i.e., XXZ-chain with S$_q$U(2)-invariant boundary conditions) extension non-commutative algebra operators two points, corresponding ``all spins up'' down'' respectively. These only remaining ones parametrized density matrices on Hilbert space, converge weakly (resp.\ down'') shifts $-\infty$ $+\infty$).

参考文章(39)
G. A. Raggio, R. F. Werner, Quantum Statistical Mechanics of General Mean Field Systems Helvetica Physica Acta. ,vol. 62, pp. 980- 1003 ,(1989)
A. Guichardet, Tensor products of C[*]-algebras Århus Universitet, Matematisk Institut. ,(1969)
R.F. Werner, The classical limit of quantum theory arXiv: Quantum Physics. ,(1995)
Rainer J. Nagel, Order unit and base norm spaces LNP. ,vol. 29, pp. 23- 29 ,(1974) , 10.1007/3-540-06725-6_4
M T Batchelor, M N Barber, Spin-s quantum chains and Temperley-Lieb algebras Journal of Physics A. ,vol. 23, ,(1990) , 10.1088/0305-4470/23/1/004
N.G. DUFFIELD, R.F. WERNER, MEAN-FIELD DYNAMICAL SEMIGROUPS ON C*-ALGEBRAS Reviews in Mathematical Physics. ,vol. 04, pp. 383- 424 ,(1992) , 10.1142/S0129055X92000108
Mark Fannes, B Nachtergaele, RF Werner, Quantum spin chains with quantum group symmetry Communications in Mathematical Physics. ,vol. 174, pp. 477- 507 ,(1996) , 10.1007/BF02101525