Antioxidant Properties of Kynurenines: Density Functional Theory Calculations.

作者: Aleksandr V. Zhuravlev , Gennady A. Zakharov , Boris F. Shchegolev , Elena V. Savvateeva-Popova

DOI: 10.1371/JOURNAL.PCBI.1005213

关键词:

摘要: Kynurenines, the main products of tryptophan catabolism, possess both prooxidant and anioxidant effects. Having multiple neuroactive properties, kynurenines are implicated in development neurological cognitive disorders, such as Alzheimer's, Parkinson's, Huntington's diseases. Autoxidation 3-hydroxykynurenine (3HOK) its derivatives, 3-hydroxyanthranilic acid (3HAA) xanthommatin (XAN), leads to hyperproduction reactive oxygen species (ROS) which damage cell structures. At same time, 3HOK 3HAA have been shown be powerful ROS scavengers. Their ability quench free radicals is believed result from presence aromatic hydroxyl group able easily abstract an electron H-atom. In this study, redox properties for several natural synthetic antioxidants calculated at different levels density functional theory gas phase water solution. Hydroxyl bond dissociation enthalpy (BDE) ionization potential (IP) appear lower than xanthurenic (XAA), phenolic antioxidants, ascorbic acid. BDE IP compounds with their precursors without group. The reaction rate H donation *O-atom phenoxyl radical (Ph-O*) methyl peroxy (Met-OO*) decreases following rankings: ~ > XAAOXO XAAENOL. absolute value Met-OO* addition ring antioxidant increases 3HAA* < 3HOK* XAAOXO* XAAENOL*. Thus, high scavenging activity can explained by easiness H-atom abstraction transfer O-atom radical, rather kynurenine radical.

参考文章(84)
Gregory F. Oxenkrug, Increased Plasma Levels of Xanthurenic and Kynurenic Acids in Type 2 Diabetes. Molecular Neurobiology. ,vol. 52, pp. 805- 810 ,(2015) , 10.1007/S12035-015-9232-0
M. Valiev, E.J. Bylaska, N. Govind, K. Kowalski, T.P. Straatsma, H.J.J. Van Dam, D. Wang, J. Nieplocha, E. Apra, T.L. Windus, W.A. de Jong, NWChem: a comprehensive and scalable open-source solution for large scale molecular simulations Computer Physics Communications. ,vol. 181, pp. 1477- 1489 ,(2010) , 10.1016/J.CPC.2010.04.018
Rui M. Borges dos Santos, José A. Martinho Simões, Energetics of the O–H Bond in Phenol and Substituted Phenols: A Critical Evaluation of Literature Data Journal of Physical and Chemical Reference Data. ,vol. 27, pp. 707- 739 ,(1998) , 10.1063/1.556020
Hong-Yu Zhang, You-Min Sun, Xiu-Li Wang, Electronic Effects on O−H Proton Dissociation Energies of Phenolic Cation Radicals: A DFT Study† Journal of Organic Chemistry. ,vol. 67, pp. 2709- 2712 ,(2002) , 10.1021/JO016234Y
Shinsuke Fukui, Robert Schwarcz, Stanley I. Rapoport, Yoshiaki Takada, Quentin R. Smith, Blood?Brain Barrier Transport of Kynurenines: Implications for Brain Synthesis and Metabolism Journal of Neurochemistry. ,vol. 56, pp. 2007- 2017 ,(1991) , 10.1111/J.1471-4159.1991.TB03460.X
S. R. El-Defrawy, R. J. Boegman, K. Jhamandas, R. J. Beninger, The neurotoxic actions of quinolinic acid in the central nervous system. Canadian Journal of Physiology and Pharmacology. ,vol. 64, pp. 369- 375 ,(1986) , 10.1139/Y86-060
R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions Journal of Chemical Physics. ,vol. 72, pp. 650- 654 ,(1980) , 10.1063/1.438955
Guilhian Leipnitz, Cristiana Schumacher, Karina B. Dalcin, Karina Scussiato, Alexandre Solano, Cláudia Funchal, Carlos S. Dutra-Filho, Angela T.S. Wyse, Clóvis M.D. Wannmacher, Alexandra Latini, Moacir Wajner, In vitro evidence for an antioxidant role of 3-hydroxykynurenine and 3-hydroxyanthranilic acid in the brain. Neurochemistry International. ,vol. 50, pp. 83- 94 ,(2007) , 10.1016/J.NEUINT.2006.04.017