An efficient Computer Aided Decision Support System for breast cancer diagnosis using Echo State Network classifier

作者: Summrina Kanwal Wajid , Amir Hussain , Bin Luo

DOI: 10.1109/CICARE.2014.7007829

关键词:

摘要: The paper presents Echo State Network (ESN) as classifier to diagnose the abnormalities in mammogram images. Abnormalities mammograms can be of different types. An efficient system which handle these and draw correct diagnosis is vital. We experimented with wavelet Local Energy based Shape Histogram (LESH) features combined classifier. suggested produces high classification accuracy 98% well sensitivity specificity rates. compared performance ESN Support Vector Machine (SVM) other classifiers results generated indicate that compete benchmark some cases beat them. rate Sensitivity Specificity also signifies power detect positive negative case correctly.

参考文章(22)
M.D. Skowronski, J.G. Harris, Minimum mean squared error time series classification using an echo state network prediction model international symposium on circuits and systems. pp. 3153- 3156 ,(2006) , 10.1109/ISCAS.2006.1693294
Peter Kovesi, Image Features From Phase Congruency Videre : A Journal of Computer Vision Research. ,vol. 1, ,(1995)
J.C. Fu, S.K. Lee, S.T.C. Wong, J.Y. Yeh, A.H. Wang, H.K. Wu, Image segmentation feature selection and pattern classification for mammographic microcalcifications. Computerized Medical Imaging and Graphics. ,vol. 29, pp. 419- 429 ,(2005) , 10.1016/J.COMPMEDIMAG.2005.03.002
Cristiane Bastos Rocha Ferreira, Dı́bio Leandro Borges, Analysis of mammogram classification using a wavelet transform decomposition brazilian symposium on computer graphics and image processing. ,vol. 24, pp. 973- 982 ,(2003) , 10.1016/S0167-8655(02)00221-0
Abu Farzan Mitul, Md Jubayer Alam Rabin, Muhammad Rakeeb, Abdullah Al Mamun Khan, GM Sultan Mahmud Rana, AbuShahab Mollah, Md Hafizur Rahman, None, Classification of real time moving object using echo state network international conference on informatics electronics and vision. pp. 1- 6 ,(2013) , 10.1109/ICIEV.2013.6572662
Mark D. Skowronski, John G. Harris, 2007 Special Issue: Automatic speech recognition using a predictive echo state network classifier Neural Networks. ,vol. 20, pp. 414- 423 ,(2007) , 10.1016/J.NEUNET.2007.04.006
Pasquale Delogu, Maria Evelina Fantacci, Parnian Kasae, Alessandra Retico, Characterization of mammographic masses using a gradient-based segmentation algorithm and a neural classifier Computers in Biology and Medicine. ,vol. 37, pp. 1479- 1491 ,(2007) , 10.1016/J.COMPBIOMED.2007.01.009
M.C. Morrone, R.A. Owens, Feature detection from local energy Pattern Recognition Letters. ,vol. 6, pp. 303- 313 ,(1987) , 10.1016/0167-8655(87)90013-4
Derek T. Puff, Etta D. Pisano, Keith E. Muller, R. Eugene Johnston, Bradley M. Hemminger, Christina A. Burbeck, Robert McLelland, Stephen M. Pizer, A method for determination of optimal image enhancement for the detection of mammographic abnormalities Journal of Digital Imaging. ,vol. 7, pp. 161- 171 ,(1994) , 10.1007/BF03168534
Fatemeh Moayedi, Zohreh Azimifar, Reza Boostani, Serajodin Katebi, Contourlet-based mammography mass classification using the SVM family Computers in Biology and Medicine. ,vol. 40, pp. 373- 383 ,(2010) , 10.1016/J.COMPBIOMED.2009.12.006