IMDE: An easy-to-use web server for missing data estimation

作者: Chia-Chun Chiu , Wei-Sheng Wu

DOI: 10.1109/ICCA.2014.6870971

关键词:

摘要: Missing value imputation is crucial for the microarray data analysis since missing values would degrade performance of downstream analysis, e.g. differentially expressed genes identification, gene clustering or classification. Although many algorithms has been proposed, convenient software tools are still lacking. The existing not easy to use and cannot tell users how choose optimal algorithm their dataset. In this paper, we present an easy-to-use web server named IMDE (Impute Data Easily). two unique features. First, it provides much more than any tool. Second, can suggest users' dataset after doing evaluation.We used four different datasets show that may be chosen selection schemes. We expect will a very useful solving problem in data.

参考文章(26)
Jianjun Hu, Haifeng Li, Michael S Waterman, Xianghong Zhou, Integrative missing value estimation for microarray data BMC Bioinformatics. ,vol. 7, pp. 449- 449 ,(2006) , 10.1186/1471-2105-7-449
Ki-Yeol Kim, Byoung-Jin Kim, Gwan-Su Yi, Reuse of imputed data in microarray analysis increases imputation efficiency. BMC Bioinformatics. ,vol. 5, pp. 160- 160 ,(2004) , 10.1186/1471-2105-5-160
Daniela Albrecht, Olaf Kniemeyer, Axel A. Brakhage, Reinhard Guthke, Missing values in gel-based proteomics. Proteomics. ,vol. 10, pp. 1202- 1211 ,(2010) , 10.1002/PMIC.200800576
Fiona Achcar, Jean-Michel Camadro, Denis Mestivier, AutoClass@IJM: a powerful tool for Bayesian classification of heterogeneous data in biology Nucleic Acids Research. ,vol. 37, pp. 63- 67 ,(2009) , 10.1093/NAR/GKP430
C. Romualdi, N. Vitulo, M. D. Favero, G. Lanfranchi, MIDAW: a web tool for statistical analysis of microarray data Nucleic Acids Research. ,vol. 33, pp. 644- 649 ,(2005) , 10.1093/NAR/GKI497
Romina Pedreschi, Maarten LATM Hertog, Sebastien C Carpentier, Jeroen Lammertyn, Johan Robben, Jean‐Paul Noben, Bart Panis, Rony Swennen, Bart M Nicolaï, None, Treatment of missing values for multivariate statistical analysis of gel-based proteomics data. Proteomics. ,vol. 8, pp. 1371- 1383 ,(2008) , 10.1002/PMIC.200700975
Johannes Tuikkala, Laura L Elo, Olli S Nevalainen, Tero Aittokallio, Missing value imputation improves clustering and interpretation of gene expression microarray data BMC Bioinformatics. ,vol. 9, pp. 202- 202 ,(2008) , 10.1186/1471-2105-9-202
Matthew F. Traxler, Dong-Eun Chang, Tyrrell Conway, Guanosine 3′,5′-bispyrophosphate coordinates global gene expression during glucose-lactose diauxie in Escherichia coli Proceedings of the National Academy of Sciences of the United States of America. ,vol. 103, pp. 2374- 2379 ,(2006) , 10.1073/PNAS.0510995103
D. J. Stekhoven, P. Buhlmann, MissForest—non-parametric missing value imputation for mixed-type data Bioinformatics. ,vol. 28, pp. 112- 118 ,(2012) , 10.1093/BIOINFORMATICS/BTR597