A hierarchy of new nonlinear evolution equations and generalized bi-Hamiltonian structures

作者: Jiao Wei , Xianguo Geng

DOI: 10.1016/J.AMC.2015.06.105

关键词:

摘要: With the aid of zero-curvature equation, a hierarchy new nonlinear evolution equations is proposed, which associated with 3 × matrix spectral problem four potentials. The generalized bi-Hamiltonian structures for are derived by using trace identity. Furthermore, we construct infinite conservation laws typical equation in utilizing parameter expansion.

参考文章(21)
Mark J. Ablowitz, David J. Kaup, Alan C. Newell, Harvey Segur, The Inverse scattering transform fourier analysis for nonlinear problems Studies in Applied Mathematics. ,vol. 53, pp. 249- 315 ,(1974) , 10.1002/SAPM1974534249
Wen-Xiu Ma, Integrable couplings and matrix loop algebras NONLINEAR AND MODERN MATHEMATICAL PHYSICS: Proceedings of the 2nd International Workshop. ,vol. 1562, pp. 105- 122 ,(2013) , 10.1063/1.4828687
Xianguo Geng, Hui Wang, Coupled Camassa–Holm equations, N-peakons and infinitely many conservation laws Journal of Mathematical Analysis and Applications. ,vol. 403, pp. 262- 271 ,(2013) , 10.1016/J.JMAA.2013.02.030
Lihua Wu, Guoliang He, Xianguo Geng, The full positive flows of Manakov hierarchy, Hamiltonian structures and conservation laws Applied Mathematics and Computation. ,vol. 220, pp. 20- 37 ,(2013) , 10.1016/J.AMC.2013.05.050
Mark J. Ablowitz, David J. Kaup, Alan C. Newell, Harvey Segur, Nonlinear-Evolution Equations of Physical Significance Physical Review Letters. ,vol. 31, pp. 125- 127 ,(1973) , 10.1103/PHYSREVLETT.31.125
Xianguo Geng, Bo Xue, A three-component generalization of Camassa–Holm equation with N-peakon solutions Advances in Mathematics. ,vol. 226, pp. 827- 839 ,(2011) , 10.1016/J.AIM.2010.07.009
Gui‐zhang Tu, The trace identity, a powerful tool for constructing the Hamiltonian structure of integrable systems Journal of Mathematical Physics. ,vol. 30, pp. 330- 338 ,(1989) , 10.1063/1.528449
Wen-Xiu Ma, A spectral problem based on so(3,R) and its associated commuting soliton equations Journal of Mathematical Physics. ,vol. 54, pp. 103509- 103509 ,(2013) , 10.1063/1.4826104
Xianguo Geng, Yunyun Zhai, H.H. Dai, Algebro-geometric solutions of the coupled modified Korteweg–de Vries hierarchy Advances in Mathematics. ,vol. 263, pp. 123- 153 ,(2014) , 10.1016/J.AIM.2014.06.013