Canonical representations of discrete curves

作者: Fabien Feschet

DOI: 10.1007/S10044-005-0246-5

关键词:

摘要: A new representation of digital curves is introduced. It has the property being unique and canonical when computed on closed curves. The based discrete notion tangents complete in sense that it contains all segments polygonalizations which can be constructed with connected subsets original curve. This extended for dealing noisy we also propose a multi-scale extension. An application given to curve decomposition into concave---convex parts syntactical methods.

参考文章(25)
Thierry Van de Merckt, Decision Trees in Numerical Attribute Spaces. international joint conference on artificial intelligence. pp. 1016- 1021 ,(1993)
Vojt?ch Jarn�k, Über die Gitterpunkte auf konvexen Kurven Mathematische Zeitschrift. ,vol. 24, pp. 500- 518 ,(1926) , 10.1007/BF01216795
Randy Kerber, ChiMerge: discretization of numeric attributes national conference on artificial intelligence. pp. 123- 128 ,(1992)
Eric Andres, The Quasi-Shear Rotation discrete geometry for computer imagery. pp. 307- 314 ,(1996) , 10.1007/3-540-62005-2_26
Anne Vialard, Geometrical parameters extraction from discrete paths discrete geometry for computer imagery. pp. 24- 35 ,(1996) , 10.1007/3-540-62005-2_3
Jean-Pierre Reveillès, Géométrie discrète, calcul en nombres entiers et algorithmique Université Louis Paster. ,(1991)
ISABELLE DEBLED-RENNESSON, JEAN-PIERRE REVEILLÈS, A LINEAR ALGORITHM FOR SEGMENTATION OF DIGITAL CURVES International Journal of Pattern Recognition and Artificial Intelligence. ,vol. 9, pp. 635- 662 ,(1995) , 10.1142/S0218001495000249
L.J. Latecki, R. Lakamper, Shape similarity measure based on correspondence of visual parts IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. 22, pp. 1185- 1190 ,(2000) , 10.1109/34.879802
Longin Jan Latecki, Azriel Rosenfeld, Supportedness and tameness differentialless geometry of plane curves Pattern Recognition. ,vol. 31, pp. 607- 622 ,(1998) , 10.1016/S0031-3203(97)00071-X