Correlation Functions in 2-Dimensional Integrable Quantum Field Theories

作者: G. Mussardo

DOI: 10.1007/978-1-4899-1516-0_14

关键词:

摘要: In this talk I discuss the form factor approach used to compute correlation functions of integrable models in two dimensions. The Sinh-Gordon model is our basic example. Using Watson’s and recursive equations satisfied by matrix elements local operators, present computation factors elementary field O(x)and stress-energy tensor T μν (x)of theory.

参考文章(26)
A.E. Arinshtein, V.A. Fateyev, A.B. Zamolodchikov, Quantum S-matrix of the (1 + 1)-dimensional Todd chain Physics Letters B. ,vol. 87, pp. 389- 392 ,(1979) , 10.1016/0370-2693(79)90561-6
Ian Grant Macdonald, Symmetric functions and Hall polynomials ,(1979)
Alexander B Zamolodchikov, Alexey B Zamolodchikov, Factorized S-matrices in two dimensions as the exact solutions of certain relativistic quantum field theory models Annals of Physics. ,vol. 120, pp. 253- 291 ,(1979) , 10.1016/0003-4916(79)90391-9
Kenneth M. Watson, Some General Relations between the Photoproduction and Scattering of π Mesons Physical Review. ,vol. 95, pp. 228- 236 ,(1954) , 10.1103/PHYSREV.95.228
C Itzykson, H Saleur, J-B Zuber, Conformal invariance and applications to statistical mechanics Conformal Invariance and Applications to Statistical Mechanics. Edited by ITZYKSON C. ,(1998) , 10.1142/0608
A. V. Mikhailov, M. A. Olshanetsky, A. M. Perelomov, Two-dimensional generalized Toda lattice Communications in Mathematical Physics. ,vol. 79, pp. 473- 488 ,(1981) , 10.1007/BF01209308