Geometric Deep Learning for Post-Menstrual Age Prediction Based on the Neonatal White Matter Cortical Surface

作者: Vitalis Vosylius , Andy Wang , Cemlyn Waters , Alexey Zakharov , Francis Ward

DOI: 10.1007/978-3-030-60365-6_17

关键词:

摘要: Accurate estimation of the age in neonates is useful for measuring neurodevelopmental, medical, and growth outcomes. In this paper, we propose a novel approach to predict the …

参考文章(29)
Yoshua Bengio, Xavier Glorot, Understanding the difficulty of training deep feedforward neural networks international conference on artificial intelligence and statistics. pp. 249- 256 ,(2010)
Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification international conference on computer vision. pp. 1026- 1034 ,(2015) , 10.1109/ICCV.2015.123
, Age terminology during the perinatal period. Pediatrics. ,vol. 114, pp. 1362- 1364 ,(2004) , 10.1542/PEDS.2004-1915
Matthew Toews, William M. Wells, Lilla Zöllei, A feature-based developmental model of the infant brain in structural MRI medical image computing and computer assisted intervention. ,vol. 15, pp. 204- 211 ,(2012) , 10.1007/978-3-642-33418-4_26
Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, Jianxiong Xiao, 3D ShapeNets: A deep representation for volumetric shapes computer vision and pattern recognition. pp. 1912- 1920 ,(2015) , 10.1109/CVPR.2015.7298801
Cecilia Bottomley, Tom Bourne, None, Dating and growth in the first trimester. Best Practice & Research in Clinical Obstetrics & Gynaecology. ,vol. 23, pp. 439- 452 ,(2009) , 10.1016/J.BPOBGYN.2009.01.011
Konstantinos Kamnitsas, Christian Ledig, Virginia FJ Newcombe, Joanna P Simpson, Andrew D Kane, David K Menon, Daniel Rueckert, Ben Glocker, None, Efficient Multi-Scale 3D CNN with Fully Connected CRF for Accurate Brain Lesion Segmentation Medical Image Analysis. ,vol. 36, pp. 61- 78 ,(2017) , 10.1016/J.MEDIA.2016.10.004
Islem Rekik, Gang Li, Pew-Thian Yap, Geng Chen, Weili Lin, Dinggang Shen, A Hybrid Multishape Learning Framework for Longitudinal Prediction of Cortical Surfaces and Fiber Tracts Using Neonatal Data medical image computing and computer assisted intervention. ,vol. 9900, pp. 210- 218 ,(2016) , 10.1007/978-3-319-46720-7_25
Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, Pierre Vandergheynst, Geometric Deep Learning: Going beyond Euclidean data IEEE Signal Processing Magazine. ,vol. 34, pp. 18- 42 ,(2017) , 10.1109/MSP.2017.2693418
James H. Cole, Rudra P.K. Poudel, Dimosthenis Tsagkrasoulis, Matthan W.A. Caan, Claire Steves, Tim D. Spector, Giovanni Montana, Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker NeuroImage. ,vol. 163, pp. 115- 124 ,(2017) , 10.1016/J.NEUROIMAGE.2017.07.059