Transient chimera-like states for forced oscillators.

作者: Dawid Dudkowski , Jerzy Wojewoda , Krzysztof Czołczyński , Tomasz Kapitaniak

DOI: 10.1063/1.5141929

关键词:

摘要: Chimera states occur widely in networks of identical oscillators as has been shown the recent extensive theoretical and experimental research. In such a state, different groups can exhibit coexisting synchronous incoherent behaviors despite homogeneous coupling. Here, we consider star network, which N peripheral end nodes are connected to central hub node. We find that if single node exhibits transient chaotic behavior whole pattern chimeralike persists for significant amount time, is created. As proof concept, examine system double pendula (peripheral nodes) located on periodically oscillating platform (central hub). show be observed simple experiments with mechanical oscillators, controlled by elementary dynamical equations. Our finding suggests observable relevant various real-world systems.

参考文章(41)
P. Jaros, L. Borkowski, B. Witkowski, K. Czolczynski, T. Kapitaniak, Multi-headed chimera states in coupled pendula European Physical Journal-special Topics. ,vol. 224, pp. 1605- 1617 ,(2015) , 10.1140/EPJST/E2015-02483-X
Bidesh K Bera, Dibakar Ghosh, M Lakshmanan, None, Chimera states in bursting neurons. Physical Review E. ,vol. 93, pp. 012205- ,(2016) , 10.1103/PHYSREVE.93.012205
Tamás Tél, The joy of transient chaos. Chaos. ,vol. 25, pp. 097619- 097619 ,(2015) , 10.1063/1.4917287
Tamás Tél, Escape rate from strange sets as an eigenvalue. Physical Review A. ,vol. 36, pp. 1502- 1505 ,(1987) , 10.1103/PHYSREVA.36.1502
Mark R. Tinsley, Simbarashe Nkomo, Kenneth Showalter, Chimera and phase-cluster states in populations of coupled chemical oscillators Nature Physics. ,vol. 8, pp. 662- 665 ,(2012) , 10.1038/NPHYS2371
Gautam C. Sethia, Abhijit Sen, Fatihcan M. Atay, Clustered Chimera States in Delay-Coupled Oscillator Systems Physical Review Letters. ,vol. 100, pp. 144102- ,(2008) , 10.1103/PHYSREVLETT.100.144102
Alan Hastings, Transients: the key to long-term ecological understanding? Trends in Ecology and Evolution. ,vol. 19, pp. 39- 45 ,(2004) , 10.1016/J.TREE.2003.09.007
Tomasz Stachowiak, Toshio Okada, A numerical analysis of chaos in the double pendulum Chaos, Solitons & Fractals. ,vol. 29, pp. 417- 422 ,(2006) , 10.1016/J.CHAOS.2005.08.032
R. B. Levien, S. M. Tan, Double pendulum: An experiment in chaos American Journal of Physics. ,vol. 61, pp. 1038- 1044 ,(1993) , 10.1119/1.17335
William Singhose, Dooroo Kim, Michael Kenison, Input Shaping Control of Double-Pendulum Bridge Crane Oscillations Journal of Dynamic Systems Measurement and Control-transactions of The Asme. ,vol. 130, pp. 034504- ,(2008) , 10.1115/1.2907363