On the rank minimization problem over a positive semidefinite linear matrix inequality

作者: M. Mesbahi , G.P. Papavassilopoulos

DOI: 10.1109/9.554402

关键词:

摘要: We consider the problem of minimizing rank a positive semidefinite matrix, subject to constraint that an affine transformation it is also semidefinite. Our method for solving this employs ideas from ordered linear complementarity theory and notion least element in vector lattice. This importance many contexts, example feedback synthesis problems, such provided.

参考文章(9)
Roger A. Horn, Charles R. Johnson, Matrix Analysis Cambridge University Press. ,(1985) , 10.1017/CBO9780511810817
M.G. Safonov, K.C. Goh, J.H. Ly, Control system synthesis via bilinear matrix inequalities advances in computing and communications. ,vol. 1, pp. 45- 49 ,(1994) , 10.1109/ACC.1994.751690
Farid Alizadeh, Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization Siam Journal on Optimization. ,vol. 5, pp. 13- 51 ,(1995) , 10.1137/0805002
Jong-Shi Pang, Richard W. Cottle, Richard E. Stone, The Linear Complementarity Problem ,(1992)
Shizuo Kakutani, A generalization of Brouwer?s fixed point theorem Duke Mathematical Journal. ,vol. 8, pp. 457- 459 ,(1941) , 10.1215/S0012-7094-41-00838-4
Mehran Mesbahi, George P. Papavassilopoulos, A cone programming approach to the bilinear matrix inequality problem and its geometry Mathematical Programming. ,vol. 77, pp. 247- 272 ,(1997) , 10.1007/BF02614437
Charles R. Johnson, Roger A. Horn, Matrix Analysis ,(1985)