Random set framework for context -based classification

作者: Jeremy Bolton

DOI:

关键词:

摘要:

参考文章(87)
Yosihiko Ogata, Masaharu Tanemura, Likelihood Analysis of Spatial Point Patterns Journal of the royal statistical society series b-methodological. ,vol. 46, pp. 496- 518 ,(1984) , 10.1111/J.2517-6161.1984.TB01322.X
Marcus A. Maloof, Ryszard S. Michalski, Learning Evolving Concepts Using Partial Memory Approach ,(1995)
John Goutsias, Ronald P. S. Mahler, Hung T. Nguyen, Random sets : theory and applications Springer. ,(1997)
Marcus A. Maloof, Ryszard S. Michalski, Selecting Examples for Partial Memory Learning Machine Learning. ,vol. 41, pp. 27- 52 ,(2000) , 10.1023/A:1007661119649
Thomas P. Minka, Rosalind Picard, A family of algorithms for approximate bayesian inference Massachusetts Institute of Technology. ,(2001)
Alexey Tsymbal, Seppo Puuronen, Bagging and Boosting with Dynamic Integration of Classifiers Principles of Data Mining and Knowledge Discovery. pp. 116- 125 ,(2000) , 10.1007/3-540-45372-5_12
Niall Rooney, David Patterson, Sarab Anand, Alexey Tsymbal, None, Dynamic Integration of Regression Models multiple classifier systems. pp. 164- 173 ,(2004) , 10.1007/978-3-540-25966-4_16
Marcos Salganicoff, Density-adaptive learning and forgetting international conference on machine learning. pp. 276- 283 ,(1993) , 10.1016/B978-1-55860-307-3.50042-3