Simple kernel estimators for certain nonparametric deconvolution problems

作者: A.J. van Es , A.R. Kok

DOI: 10.1016/S0167-7152(98)00054-6

关键词:

摘要: Abstract We consider deconvolution problems where the observations are equal in distribution to X = λ 1 E + ⋯ m Y , or μ L . Here random variables sums independent, i exponentially distributed, Laplace distributed and has an unknown F which we want estimate. The constants given. These include exponential, gamma deconvolution. derive inversion formulas, expressing terms of observations. Simple kernel estimators its density f then introduced by plugging standard pointwise asymptotic properties investigated.

参考文章(11)
Piet Groeneboom, Lectures on inverse problems Lecture Notes in Mathematics. pp. 67- 164 ,(1996) , 10.1007/BFB0095675
Martin T. Barlow, David Nualart, Lectures on Probability Theory and Statistics Lecture Notes in Mathematics. ,vol. 95, pp. 349- ,(1998) , 10.1007/BFB0092536
Peter J. Diggle, Peter Hall, A Fourier Approach to Nonparametric Deconvolution of a Density Estimate Journal of the royal statistical society series b-methodological. ,vol. 55, pp. 523- 531 ,(1993) , 10.1111/J.2517-6161.1993.TB01920.X
Harry Pollard, Distribution functions containing a Gaussian factor Proceedings of the American Mathematical Society. ,vol. 4, pp. 578- 582 ,(1953) , 10.1090/S0002-9939-1953-0056122-1
William R. Gaffey, A Consistent Estimator of a Component of a Convolution Annals of Mathematical Statistics. ,vol. 30, pp. 198- 205 ,(1959) , 10.1214/AOMS/1177706375
Raymond J. Carroll, Peter Hall, Optimal Rates of Convergence for Deconvolving a Density Journal of the American Statistical Association. ,vol. 83, pp. 1184- 1186 ,(1988) , 10.1080/01621459.1988.10478718
Jianqing Fan, On the Optimal Rates of Convergence for Nonparametric Deconvolution Problems Annals of Statistics. ,vol. 19, pp. 1257- 1272 ,(1991) , 10.1214/AOS/1176348248
Elias Masry, John A. Rice, Gaussian deconvolution via differentiation Canadian Journal of Statistics-revue Canadienne De Statistique. ,vol. 20, pp. 9- 21 ,(1992) , 10.2307/3315571