Extreme convex set functions with finite carrier: General theory

作者: J. Rosenmüller , H.G. Weidner

DOI: 10.1016/0012-365X(74)90127-7

关键词:

摘要: Let @W={1,...,n} and P={X:[email protected][email protected]}. A mapping e : P->R^+ is a convex set function if e(@?)=0 e(S) + e(T)== 2. There certain subsystem of sets [email protected] such that m^@t(S)[email protected]"@t=e(S) (@[email protected]}, is, the S m^@t(S)[email protected]"@t(@[email protected]) maximal term in representation by m^1,...,m^@t @a"1,[email protected]"t.e called nondegenerate these subsystems determine measures uniquely it turns out nondegeneracy extremality are equivalent for @e ^1. Moreover, seen closely related to generalized version problem ''represent given integer @l >= o means weights g,...,g"r 0 via @s^r"@r="1a"@rg"@[email protected] coefficients a"@r satisfy 0=

参考文章(7)
Joachim Rosenm�ller, Some properties of convex set functions Archiv der Mathematik. ,vol. 22, pp. 420- 430 ,(1971) , 10.1007/BF01222598
Junji Hashimoto, On a lattice with a valuation Proceedings of the American Mathematical Society. ,vol. 3, pp. 1- 2 ,(1952) , 10.1090/S0002-9939-1952-0047606-X
M. Maschler, B. Peleg, L. S. Shapley, The kernel and bargaining set for convex games International Journal of Game Theory. ,vol. 1, pp. 73- 93 ,(1971) , 10.1007/BF01753435
Gustave Choquet, Theory of capacities Annales de l’institut Fourier. ,vol. 5, pp. 131- 295 ,(1954) , 10.5802/AIF.53
J Rosenmüller, H.G Weidner, A class of extreme convex set functions with finite carrier Advances in Mathematics. ,vol. 10, pp. 1- 38 ,(1973) , 10.1016/0001-8708(73)90095-9
Lloyd S. Shapley, Cores of Convex Games International Journal of Game Theory. ,vol. 1, pp. 11- 26 ,(1971) , 10.1007/BF01753431
J. Edmonds, Submodular functions, matroids, and certain polyhedra Combinatorial Structures and Their Applications. pp. 69- 87 ,(1970)