Robust non-negative least squares using sparsity

作者: Filip Elvander , Stefan Ingi Adalbjornsson , Andreas Jakobsson

DOI: 10.1109/EUSIPCO.2016.7760210

关键词:

摘要: Sparse, non-negative signals occur in many applications. To recover such signals, estimation posed as least squares problems have proven to be fruitful. Efficient algorithms with high accuracy been proposed, but of them assume either perfect knowledge the dictionary generating signal, or attempts explain deviations from this by attributing components that for some reason is missing dictionary. In work, we propose a robust algorithm allows differ assumed dictionary, introducing uncertainty setup. The proposed enables an improved modeling measurements, and may efficiently implemented using ADMM implementation. Numerical examples illustrate performance compared standard LASSO estimator.

参考文章(18)
Jie Chen, Cedric Richard, Jose-Carlos M. Bermudez, Paul Honeine, Variants of Non-Negative Least-Mean-Square Algorithm and Convergence Analysis IEEE Transactions on Signal Processing. ,vol. 62, pp. 3990- 4005 ,(2014) , 10.1109/TSP.2014.2332440
Yuntao Qian, Sen Jia, Jun Zhou, Antonio Robles-Kelly, None, Hyperspectral Unmixing via $L_{1/2}$ Sparsity-Constrained Nonnegative Matrix Factorization IEEE Transactions on Geoscience and Remote Sensing. ,vol. 49, pp. 4282- 4297 ,(2011) , 10.1109/TGRS.2011.2144605
Michael Rubsamen, Marius Pesavento, Maximally Robust Capon Beamformer IEEE Transactions on Signal Processing. ,vol. 61, pp. 2030- 2041 ,(2013) , 10.1109/TSP.2013.2242067
Di Wu, Mehrdad Yaghoobi, Shaun Kelly, Mike Davies, Rhea Clewes, A sparse regularized model for Raman spectral analysis 2014 Sensor Signal Processing for Defence (SSPD). pp. 1- 5 ,(2014) , 10.1109/SSPD.2014.6943306
N. R. Butt, S. I. Adalbjornsson, S. D. Somasundaram, A. Jakobsson, Robust fundamental frequency estimation in the presence of inharmonicities 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. pp. 5499- 5503 ,(2013) , 10.1109/ICASSP.2013.6638715
Mehrdad Yaghoobi, Di Wu, Mike E. Davies, Fast Non-Negative Orthogonal Matching Pursuit IEEE Signal Processing Letters. ,vol. 22, pp. 1229- 1233 ,(2015) , 10.1109/LSP.2015.2393637
Alfred M. Bruckstein, Michael Elad, Michael Zibulevsky, Sparse non-negative solution of a linear system of equations is unique international symposium on communications, control and signal processing. pp. 762- 767 ,(2008) , 10.1109/ISCCSP.2008.4537325
Arshia Cont, Shlomo Dubnov, David Wessel, Realtime Multiple-pitch and Multiple-instrument Recognition For Music Signals using Sparse Non-negative Constraints Proceedings of Digital Audio Effects Conference (DAFx). ,(2007)
Michael C. Grant, Stephen P. Boyd, Graph Implementations for Nonsmooth Convex Programs Lecture Notes in Control and Information Sciences. pp. 95- 110 ,(2008) , 10.1007/978-1-84800-155-8_7
Marian-Daniel Iordache, José M. Bioucas-Dias, Antonio Plaza, Sparse Unmixing of Hyperspectral Data IEEE Transactions on Geoscience and Remote Sensing. ,vol. 49, pp. 2014- 2039 ,(2011) , 10.1109/TGRS.2010.2098413