Direct numerical simulation of turbulent heat transfer in pipe flows: Effect of Prandtl number

作者: L. Redjem-Saad , M. Ould-Rouiss , G. Lauriat

DOI: 10.1016/J.IJHEATFLUIDFLOW.2007.02.003

关键词:

摘要: Abstract Direct numerical simulations of heat transfer in a fully developed turbulent pipe flow with isoflux condition imposed at the wall are performed for Reynolds number based on radius Re  = 5500. Main emphasis is placed Prandtl effects flow. The scaling mean temperature profiles investigated order to derive correct logarithmic law various Pr . rms fluctuations and fluxes found increase when increasing number. number, t , almost independent molecular  ⩾ 0.2. radial distributions higher statistics (skewness flatness) confirm intermittent behaviour close vicinity wall; this more pronounced an Nusselt good agreement findings literature. Probability density functions joint probability velocity used describe characteristics transfer. instantaneous thermal fields plotted analyse structures. To explore impact curvature transfer, predictions were compared available results channel These comparisons show slightly intense

参考文章(27)
Shin‐ichi Satake, Tomoaki Kunugi, Direct numerical simulation of turbulent heat transfer in an axially rotating pipe flow International Journal of Numerical Methods for Heat & Fluid Flow. ,vol. 12, pp. 958- 1008 ,(2002) , 10.1108/09615530210448723
Hyon Kook MYONG, Nobuhide KASAGI, Masaru HIRATA, Numerical Prediction of Turbulent Pipe Flow Heat Transfe for Various Prandtl Number Fluids with the Improved k-ε Turbulence Model JSME international journal. Series 2, Fluids engineering, heat transfer, power, combustion, thermophysical properties. ,vol. 32, pp. 613- 622 ,(1989) , 10.1299/JSMEB1988.32.4_613
John L. Lumley, Hendrik Tennekes, A First Course in Turbulence ,(1972)
E.E. Musschenga, P.J. Hamersma, J.M.H. Fortuin, Momentum, heat and mass transfer in turbulent pipe flow: The extended random surface renewal model Chemical Engineering Science. ,vol. 47, pp. 4373- 4392 ,(1992) , 10.1016/0009-2509(92)85116-S
C.A. Sleicher, M.W. Rouse, A convenient correlation for heat transfer to constant and variable property fluids in turbulent pipe flow International Journal of Heat and Mass Transfer. ,vol. 18, pp. 677- 683 ,(1975) , 10.1016/0017-9310(75)90279-3
M. Piller, Direct numerical simulation of turbulent forced convection in a pipe International Journal for Numerical Methods in Fluids. ,vol. 49, pp. 583- 602 ,(2005) , 10.1002/FLD.994
Hojin Kong, Haecheon Choi, Joon Sik Lee, Direct numerical simulation of turbulent thermal boundary layers Physics of Fluids. ,vol. 12, pp. 2555- 2568 ,(2000) , 10.1063/1.1287912
K. Bremhorst, K.J. Bullock, Spectral measurements of turbulent heat and momentum transfer in fully developed pipe flow International Journal of Heat and Mass Transfer. ,vol. 16, pp. 2141- 2154 ,(1973) , 10.1016/0017-9310(73)90002-1
S. S. Thakre, J. B. Joshi, CFD modeling of heat transfer in turbulent pipe flows AIChE Journal. ,vol. 46, pp. 1798- 1812 ,(2000) , 10.1002/AIC.690460909
Hiroshi Kawamura, Hiroyuki Abe, Yuichi Matsuo, DNS of turbulent heat transfer in channel flow with respect to Reynolds and Prandtl number effects International Journal of Heat and Fluid Flow. ,vol. 20, pp. 196- 207 ,(1999) , 10.1016/S0142-727X(99)00014-4