How did a Major Confined Flare Occur in Super Solar Active Region 12192

作者: Vasyl B Yurchyshyn , Vasyl B Yurchyshyn , Chaowei Jiang , Chaowei Jiang , Xueshang Feng

DOI: 10.3847/0004-637X/828/1/62

关键词:

摘要: We study the physical mechanism of a major X-class solar flare that occurred in super NOAA active region (AR) 12192 using data-driven numerical magnetohydrodynamic (MHD) modeling complemented with observations. With evolving magnetic fields observed at surface as bottom boundary input, we drive an MHD system to evolve self-consistently correspondence realistic coronal evolution. During two-day time interval, modeled field has been slowly stressed by photospheric evolution,which gradually created large-scale current sheet, i.e., narrow layer intense current, core AR. The was successively enhanced until it became so thin tether-cutting reconnection between sheared arcades set in, which led flare. reconnecting lines and their footpoints match well hot flaring loops ribbons, respectively, suggesting model successfully "reproduced" macroscopic process In particular, simulation, explained why this event is confined eruption-the consequent shared arcade instead newly formed flux rope. also found much weaker implosion effect comparing many other flares

参考文章(93)
Nicole Vilmer, Etienne Pariat, Hamish A. S. Reid, Guillaume Aulanier, X-ray and UV investigation into the magnetic connectivity of a solar flare arXiv: Solar and Stellar Astrophysics. ,(2012) , 10.1051/0004-6361/201219562
T. G. Forbes, J. A. Linker, J. Chen, C. Cid, J. Kóta, M. A. Lee, G. Mann, Z. Mikić, M. S. Potgieter, J. M. Schmidt, G. L. Siscoe, R. Vainio, S. K. Antiochos, P. Riley, CME Theory and Models Space Science Reviews. ,vol. 123, pp. 251- 302 ,(2006) , 10.1007/S11214-006-9019-8
P. Romano, F. Zuccarello, S. L. Guglielmino, F. Berrilli, R. Bruno, V. Carbone, G. Consolini, M. de Lauretis, D. Del Moro, A. Elmhamdi, I. Ermolli, S. Fineschi, P. Francia, A. S. Kordi, E. Landi Degl’Innocenti, M. Laurenza, F. Lepreti, M. F. Marcucci, G. Pallocchia, E. Pietropaolo, M. Romoli, A. Vecchio, M. Vellante, U. Villante, Recurrent flares in active region NOAA 11283 Astronomy and Astrophysics. ,vol. 582, ,(2015) , 10.1051/0004-6361/201525887
A. Savcheva, E. Pariat, Y. Su, Y. Su, E. E. DeLuca, E. Werner, P. McCauley, S. McKillop, E. Hanson, THE RELATION BETWEEN SOLAR ERUPTION TOPOLOGIES AND OBSERVED FLARE FEATURES. I. FLARE RIBBONS The Astrophysical Journal. ,vol. 810, pp. 96- ,(2015) , 10.1088/0004-637X/810/2/96
G. H. Fisher, W. P. Abbett, D. J. Bercik, M. D. Kazachenko, B. J. Lynch, B. T. Welsch, J. T. Hoeksema, K. Hayashi, Y. Liu, A. A. Norton, A. Sainz Dalda, X. Sun, M. L. DeRosa, M. C. M. Cheung, The Coronal Global Evolutionary Model: Using HMI Vector Magnetogram and Doppler Data to Model the Buildup of Free Magnetic Energy in the Solar Corona Space Weather-the International Journal of Research and Applications. ,vol. 13, pp. 369- 373 ,(2015) , 10.1002/2015SW001191
S. Masson, E. Pariat, G. Aulanier, C. J. Schrijver, THE NATURE OF FLARE RIBBONS IN CORONAL NULL-POINT TOPOLOGY The Astrophysical Journal. ,vol. 700, pp. 559- 578 ,(2009) , 10.1088/0004-637X/700/1/559
H. S. Hudson, Implosions in Coronal Transients The Astrophysical Journal. ,vol. 531, pp. L75- L77 ,(2000) , 10.1086/312516
Tahar Amari, Aurélien Canou, Jean-Jacques Aly, Characterizing and predicting the magnetic environment leading to solar eruptions Nature. ,vol. 514, pp. 465- 469 ,(2014) , 10.1038/NATURE13815