An improved random forest-based rule extraction method for breast cancer diagnosis

作者: Sutong Wang , Yuyan Wang , Dujuan Wang , Yunqiang Yin , Yanzhang Wang

DOI: 10.1016/J.ASOC.2019.105941

关键词:

摘要: … , Random Forest uses bootstrap sampling and random … based on rules extracted from Random Forest, although its … paper is to devise an improved Random Forest (RF)-based rule …

参考文章(56)
Bin Li, J Friedman, R Olshen, C Stone, Classification and Regression Trees (CART) Springer, Cham. pp. 1- 65 ,(2008) , 10.1007/978-0-387-77501-2_3
Md. Ridwan Al Iqbal, Rule extraction from ensemble methods using aggregated decision trees international conference on neural information processing. pp. 599- 607 ,(2012) , 10.1007/978-3-642-34481-7_73
Yaochu Jin, Multi-objective machine learning Springer Verlag. ,(2006) , 10.1007/3-540-33019-4
William W. Cohen, Fast Effective Rule Induction Machine Learning Proceedings 1995. pp. 115- 123 ,(1995) , 10.1016/B978-1-55860-377-6.50023-2
Elizabeth M. Ward, Carol E. DeSantis, Chun Chieh Lin, Joan L. Kramer, Ahmedin Jemal, Betsy Kohler, Otis W. Brawley, Ted Gansler, Cancer statistics: Breast cancer in situ CA: A Cancer Journal for Clinicians. ,vol. 65, pp. 481- 495 ,(2015) , 10.3322/CAAC.21321
Shenkai Gu, Ran Cheng, Yaochu Jin, Multi-objective ensemble generation Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery. ,vol. 5, pp. 234- 245 ,(2015) , 10.1002/WIDM.1158
Nahla Barakat, Andrew P. Bradley, Rule extraction from support vector machines: A review Neurocomputing. ,vol. 74, pp. 178- 190 ,(2010) , 10.1016/J.NEUCOM.2010.02.016
Dursun Delen, Glenn Walker, Amit Kadam, Predicting breast cancer survivability: a comparison of three data mining methods Artificial Intelligence in Medicine. ,vol. 34, pp. 113- 127 ,(2005) , 10.1016/J.ARTMED.2004.07.002
M.J. Gacto, R. Alcalá, F. Herrera, Interpretability of linguistic fuzzy rule-based systems: An overview of interpretability measures Information Sciences. ,vol. 181, pp. 4340- 4360 ,(2011) , 10.1016/J.INS.2011.02.021