Multi-objective particle swarm optimization for channel selection in brain-computer interfaces

作者: JQ Gan , Bas Hasan

DOI:

关键词:

摘要: This paper presents a novel application of multi-objective particle swarm optimization (MOPSO) method to solve the problem effective channel selection for Brain-Computer Interface (BCI) systems. The proposed is tested on 6 subjects and compared another search based method, Sequential Floating Forward Search (SFFS). results demonstrate effectiveness MOPSO in selecting fewer number channels with insignificant sacrifice accuracy, which very important build robust online BCI

参考文章(12)
Margarita Reyes Sierra, Carlos A. Coello Coello, Improving PSO-Based multi-objective optimization using crowding, mutation and ∈-dominance international conference on evolutionary multi criterion optimization. pp. 505- 519 ,(2005) , 10.1007/978-3-540-31880-4_35
Bashar Awwad Shiekh Hasan, John Q Gan, Matthew Dyson, Tugce Balli, A Study via Feature Selection on the Separability of Approximate Entropy for Brain-Computer Interfaces De Montfort University. ,(2008)
P. Pudil, J. Novovičová, J. Kittler, Floating search methods in feature selection Pattern Recognition Letters. ,vol. 15, pp. 1119- 1125 ,(1994) , 10.1016/0167-8655(94)90127-9
Carlos A. Coello Coello, Margarita Reyes-Sierra, Multi-Objective Particle Swarm Optimizers: A Survey of the State-of-the-Art International Journal of Computational Intelligence Research. ,vol. 2, pp. 287- 308 ,(2006) , 10.5019/J.IJCIR.2006.68
C.V. Ramamoorthy, B.W. Wah, Knowledge and data engineering IEEE Transactions on Knowledge and Data Engineering. ,vol. 1, pp. 9- 16 ,(1989) , 10.1109/69.43400
Jun Lv, Meichun Liu, Common Spatial Pattern and Particle Swarm Optimization for Channel Selection in BCI international conference on innovative computing, information and control. pp. 457- 457 ,(2008) , 10.1109/ICICIC.2008.196
Jing Jin, Xingyu Wang, Jianhua Zhang, Optimal selection of EEG electrodes via DPSO algorithm world congress on intelligent control and automation. pp. 5095- 5099 ,(2008) , 10.1109/WCICA.2008.4593756
Benjamin Blankertz, Guido Dornhege, Matthias Krauledat, Klaus-Robert Müller, Gabriel Curio, The non-invasive Berlin Brain-Computer Interface: fast acquisition of effective performance in untrained subjects. NeuroImage. ,vol. 37, pp. 539- 550 ,(2007) , 10.1016/J.NEUROIMAGE.2007.01.051
A. Jain, D. Zongker, Feature selection: evaluation, application, and small sample performance IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. 19, pp. 153- 158 ,(1997) , 10.1109/34.574797