Exploitation of binding energy for catalysis and design

作者: Summer B. Thyme , Jordan Jarjour , Ryo Takeuchi , James J. Havranek , Justin Ashworth

DOI: 10.1038/NATURE08508

关键词:

摘要: Enzymes use substrate-binding energy both to promote ground-state association and stabilize the reaction transition state selectively. The monomeric homing endonuclease I-AniI cleaves with high sequence specificity in centre of a 20-base-pair (bp) DNA target site, amino (N)-terminal domain enzyme making extensive binding interactions left (-) side site similarly structured carboxy (C)-terminal interacting right (+) side. Here we show that, despite approximate twofold symmetry enzyme-DNA complex, there is almost complete segregation responsible for substrate interface transition-state stabilization Although single base-pair substitutions throughout entire reduce catalytic efficiency, mutations half-site exclusively increase dissociation constant (K(D)) Michaelis under single-turnover conditions (K(M)*), those primarily decrease turnover number (k(cat)*). reduction activity produced by on side, but not can be suppressed tethering displayed surface yeast. This dramatic asymmetry enzyme-substrate catalysis has direct relevance redesign endonucleases cleave genomic sites gene therapy other applications. Computationally redesigned enzymes that achieve new specificities do so modulating K(M)*, whereas redesigns altered modulate k(cat)*. Our results illustrate how classical enzymology modern protein design each inform other.

参考文章(29)
S E Halford, N P Johnson, J Grinsted, The EcoRI restriction endonuclease with bacteriophage lambda DNA. Kinetic studies. Biochemical Journal. ,vol. 191, pp. 581- 592 ,(1980) , 10.1042/BJ1910581
S Annie Gai, K Dane Wittrup, Yeast surface display for protein engineering and characterization. Current Opinion in Structural Biology. ,vol. 17, pp. 467- 473 ,(2007) , 10.1016/J.SBI.2007.08.012
Lei Zhao, Stefan Pellenz, Barry L. Stoddard, Activity and specificity of the bacterial PD-(D/E)XK Homing Endonuclease I-Ssp6803I Journal of Molecular Biology. ,vol. 385, pp. 1498- 1510 ,(2009) , 10.1016/J.JMB.2008.10.096
Daniela Röthlisberger, Olga Khersonsky, Andrew M. Wollacott, Lin Jiang, Jason DeChancie, Jamie Betker, Jasmine L. Gallaher, Eric A. Althoff, Alexandre Zanghellini, Orly Dym, Shira Albeck, Kendall N. Houk, Dan S. Tawfik, David Baker, Kemp elimination catalysts by computational enzyme design Nature. ,vol. 453, pp. 190- 195 ,(2008) , 10.1038/NATURE06879
Ryo Takeuchi, Michael Certo, Mark G. Caprara, Andrew M. Scharenberg, Barry L. Stoddard, Optimization of in vivo activity of a bifunctional homing endonuclease and maturase reverses evolutionary degradation Nucleic Acids Research. ,vol. 37, pp. 877- 890 ,(2009) , 10.1093/NAR/GKN1007
Tim N. C. Wells, Alan R. Fersht, Use of binding energy in catalysis analyzed by mutagenesis of the tyrosyl-tRNA synthetase Biochemistry. ,vol. 25, pp. 1881- 1886 ,(1986) , 10.1021/BI00356A007
T. A. Kunkel, Rapid and efficient site-specific mutagenesis without phenotypic selection. Proceedings of the National Academy of Sciences of the United States of America. ,vol. 82, pp. 488- 492 ,(1985) , 10.1073/PNAS.82.2.488
Pilar Redondo, Jesús Prieto, Inés G. Muñoz, Andreu Alibés, Francois Stricher, Luis Serrano, Jean-Pierre Cabaniols, Fayza Daboussi, Sylvain Arnould, Christophe Perez, Philippe Duchateau, Frédéric Pâques, Francisco J. Blanco, Guillermo Montoya, Molecular basis of xeroderma pigmentosum group C DNA recognition by engineered meganucleases Nature. ,vol. 456, pp. 107- 111 ,(2008) , 10.1038/NATURE07343
James J. Havranek, Pehr B. Harbury, Automated design of specificity in molecular recognition. Nature Structural & Molecular Biology. ,vol. 10, pp. 45- 52 ,(2003) , 10.1038/NSB877