Fitting Smooth Paths to Speherical Data

作者: Peter E. Jupp , John T. Kent

DOI: 10.2307/2347843

关键词:

摘要: On propose une approche unifiee qui est invariante sous des modifications du systeme de coordonnees et tient compte la geometrie sphere facon naturelle

参考文章(14)
Nicholas I. Fisher, Toby Lewis, A Note on Spherical Splines Journal of the royal statistical society series b-methodological. ,vol. 47, pp. 482- 488 ,(1985) , 10.1111/J.2517-6161.1985.TB01378.X
I. J. Schoenberg, On Interpolation by Spline Functions and its Minimal Properties I. J. Schoenberg Selected Papers. pp. 407- 427 ,(1988) , 10.1007/978-1-4899-0433-1_21
J. A. Jacobs, The Earth's Core ,(1975)
Grace Wahba, Spline Interpolation and Smoothing on the Sphere SIAM Journal on Scientific and Statistical Computing. ,vol. 2, pp. 5- 16 ,(1981) , 10.1137/0902002
R. Thompson, R.M. Clark, Fitting polar wander paths Physics of the Earth and Planetary Interiors. ,vol. 27, pp. 1- 7 ,(1981) , 10.1016/0031-9201(81)90082-0
G. S. Watson, Smoothing and interpolation by kriging and with splines Journal of the International Association for Mathematical Geology. ,vol. 16, pp. 601- 615 ,(1984) , 10.1007/BF01029320
R. L. Parker, C. R. Denham, Interpolation of unit vectors Geophysical Journal International. ,vol. 58, pp. 685- 687 ,(1979) , 10.1111/J.1365-246X.1979.TB04802.X