A model for the quantitative estimation of mineral liberation by grinding

作者: R.P. King

DOI: 10.1016/0301-7516(79)90037-1

关键词:

摘要: Abstract An exact expression is derived for the fraction of particles mesh size D that contain less than a prescribed any particular mineral. The obtained entirely in terms distributions linear intercept lengths minerals ore. These can be by line traverses across section No other statistical information regarding mineral grain sizes required. theory completely free empirical constants or parameters and no assumptions are made shape grains ore particles. predicts fractional liberation at given by: L(D)=1− 1 μ ∫ 0 u {1−N( l )} {2−F(l)}dl where F(l) distribution mean length N(l/D) function Du largest particle D. was confirmed experimentally pyrite from Witwatersrand quartzite.

参考文章(7)
Antoine Marc. Gaudin, Principles of Mineral Dressing ,(1939)
L. Takács, On certain sojourn time problems in the theory of stochastic processes Acta Mathematica Hungarica. ,vol. 8, pp. 169- 191 ,(1957) , 10.1007/BF02025241
D.R. Bartlett, A.L. Mular, Dependence of flotation rate on particle size and fractional mineral content International Journal of Mineral Processing. ,vol. 1, pp. 277- 286 ,(1974) , 10.1016/0301-7516(74)90021-0
Richard E. Barlow, Frank Proschan, Mathematical theory of reliability ,(1965)
K. D. Tocher, Felix Chayes, Petrographic Modal Analysis. Journal of the Royal Statistical Society. Series A (General). ,vol. 120, pp. 223- ,(1957) , 10.2307/2342830