Molecular Charge Distributions and Response Functions: Multipolar and Penetration Terms; Application to the Theory of Intermolecular Interactions

作者: P. Claverie

DOI: 10.1007/978-94-009-2851-0_15

关键词:

摘要: In order to investigate and evaluate intermolecular interaction energies, it is obviously essential decompose them inasmuch as possible into a sum of contributions with simple behavior functions distances relative orientations (see e.g. [1–18]). Such task can be achieved by using perturbation theory. The total Hamiltonian H the complex written $$ = {H_0} + V $$ (1.1) with {H^{{(1)}}} {H^{{(2)}}} $$ (1.2) where (i) denotes isolated molecule [2], section II.A) potential: \sum\limits_{{{v^{{(1)}}}}} {\sum\limits_{{{v^{{(2)}}}}} {\frac{{{Z_{{{v^{{(1)}}}}}}{Z_{{{v^{{(2)}}}}}}}}{{\left| {{r_{{{v^{{(1)}}}}}} - {r_{{{v^{{(2)}}}}}}} \right|}}} } {\sum\limits_{{{j^{{(2)}}}}} {\frac{{{Z_{{{v^{{(1)}}}}}}}}{{\left| {r_{{{j^{{(2)}}}}}}} \sum\limits_{{{i^{{(1)}}}}} {\frac{{{Z_{{{v^{{(2)}}}}}}}}{{\left| {{r_{{{i^{{(1)}}}}}} {\frac{1}{{\left| $$ (1.3) where v (m) i label nuclei electrons, respectively, m (here 1,2).

参考文章(77)
Pierre Claverie, Intermolecular Interactions and Solvent Effects: Simplified Theoretical Methods Quantum Theory of Chemical Reactions. pp. 151- 175 ,(1982) , 10.1007/978-94-015-6918-7_10
A. D. Tait, G. G. Hall, Point charge models for LiH, CH4, and H2O Theoretical Chemistry Accounts. ,vol. 31, pp. 311- 324 ,(1973) , 10.1007/BF00527558
A.J. Stone, M. Alderton, Distributed multipole analysis Molecular Physics. ,vol. 56, pp. 1047- 1064 ,(2006) , 10.1080/00268978500102891
Bruno Linder, David A. Rabenold, Unified Treatment of van der Waals Forces between Two Molecules of Arbitrary Sizes and Electron Delocalizations Advances in Quantum Chemistry. ,vol. 6, pp. 203- 233 ,(1972) , 10.1016/S0065-3276(08)60546-8
Steven A. Orszag, Carl M. Bender, Advanced mathematical methods for scientists and engineers ,(1978)
C. F. Curtiss, J. O. Hirschfelder, R. B. Bird, Molecular theory of gases and liquids ,(1954)