作者: P. Claverie
DOI: 10.1007/978-94-009-2851-0_15
关键词:
摘要: In order to investigate and evaluate intermolecular interaction energies, it is obviously essential decompose them inasmuch as possible into a sum of contributions with simple behavior functions distances relative orientations (see e.g. [1–18]). Such task can be achieved by using perturbation theory. The total Hamiltonian H the complex written $$ = {H_0} + V $$ (1.1) with {H^{{(1)}}} {H^{{(2)}}} $$ (1.2) where (i) denotes isolated molecule [2], section II.A) potential: \sum\limits_{{{v^{{(1)}}}}} {\sum\limits_{{{v^{{(2)}}}}} {\frac{{{Z_{{{v^{{(1)}}}}}}{Z_{{{v^{{(2)}}}}}}}}{{\left| {{r_{{{v^{{(1)}}}}}} - {r_{{{v^{{(2)}}}}}}} \right|}}} } {\sum\limits_{{{j^{{(2)}}}}} {\frac{{{Z_{{{v^{{(1)}}}}}}}}{{\left| {r_{{{j^{{(2)}}}}}}} \sum\limits_{{{i^{{(1)}}}}} {\frac{{{Z_{{{v^{{(2)}}}}}}}}{{\left| {{r_{{{i^{{(1)}}}}}} {\frac{1}{{\left| $$ (1.3) where v (m) i label nuclei electrons, respectively, m (here 1,2).