作者: Richárd Rimányi , Alexander Yong , Anna Weigandt
DOI: 10.1007/S10801-017-0771-5
关键词:
摘要: We present a particular connection between classical partition combinatorics and the theory of quiver representations. Specifically, we give bijective proof an analogue A. L. Cauchy’s Durfee square identity to multipartitions. then use this result new M. Reineke’s in case quivers $${\mathcal {Q}}$$ Dynkin type Our is stated terms lacing diagrams S. Abeasis–A. Del Fra, which parameterize orbits representation space for fixed dimension vector.