Computation of k1via mennicke symbols

作者: Leonid N. Vaserstein

DOI: 10.1080/00927878708823434

关键词:

摘要: For any ring A, the group K1A is filtered by Whitehead determinants of invertible matrices over A different sizes. We want to compute corresponding graded (especially highest degree non-zero term) in terms symbols which generalize Mennicke’s symbol. In particular, we Bass-Milnor-Serre result presents SK1A a Dedekind via Mennicke symbol, an arbitrary commutative satisfying Bass second stable range condition. As application, SK1 computed for some rings continuous functions. Some our theorems are partially known, but have often weakened hypotheses, using conditions rather than Krull dimension (having mind applications functions).

参考文章(21)
L. N. Vaserstein, On the normal subgroups of GLn over a ring Springer, Berlin, Heidelberg. pp. 456- 465 ,(1981) , 10.1007/BFB0089533
A. A. Suslin, Mennicke symbols and their applications in the k-theory of fields Lecture Notes in Mathematics. ,vol. 966, pp. 334- 356 ,(1982) , 10.1007/BFB0062182
John Willard Milnor, Introduction to algebraic K-theory ,(1971)
A A Suslin, ON STABLY FREE MODULES Mathematics of The Ussr-sbornik. ,vol. 31, pp. 479- 491 ,(1977) , 10.1070/SM1977V031N04ABEH003717
L N Vasershtein, FOUNDATIONS OF ALGEBRAIC K-THEORY Russian Mathematical Surveys. ,vol. 31, pp. 89- 156 ,(1976) , 10.1070/RM1976V031N04ABEH001560
Mark I. Krusemeyer, Fundamental Groups, Algebraic K-Theory, and a Problem of Abhyankar. Inventiones Mathematicae. ,vol. 19, pp. 15- 47 ,(1973) , 10.1007/BF01418849
H. Bass, $K$-theory and stable algebra Publications Mathématiques de l'IHÉS. ,vol. 22, pp. 5- 60 ,(1964) , 10.1007/BF02684689
L N Vaseršteĭn, A A Suslin, Serre's Problem on Projective Modules Over Polynomial Rings, and Algebraic K-THEORY Mathematics of The Ussr-izvestiya. ,vol. 10, pp. 937- 1001 ,(1976) , 10.1070/IM1976V010N05ABEH001822
Frans Keune, (t2 - t)-Reciprocities on the Affine Line and Matsumoto's Theorem. Inventiones Mathematicae. ,vol. 28, pp. 185- 192 ,(1975) , 10.1007/BF01436072
Richard G Swan, Jacob Towber, A class of projective modules which are nearly free Journal of Algebra. ,vol. 36, pp. 427- 434 ,(1975) , 10.1016/0021-8693(75)90143-X