Comparing the performance of fuzzy and crisp classifiers on remotely sensed images: a case of snow classification

作者: Monica Pepe , Luigi Boschetti , Pietro Alessandro Brivio , Anna Rampini

DOI: 10.1080/01431160903401395

关键词:

摘要: This study deals with the evaluation of accuracy benefits offered by a fuzzy classifier as compared to hard classifiers using satellite imagery for thematic mapping applications. When crisp approach is adopted classify moderate resolution data, presence mixed coverage pixels implies that final product will have errors, either omission or commission, which are not avoidable and solely due spatial data. Theoretically, soft affected such in principle can produce classification more accurate than any classifier. In this we use Pareto boundary optimal solutions quantitative method compare performance statistical one two classifiers, determine highest could be achieved classifiers. As an application, applied case snow from Moderate-Resolution Imaging Spectroradiometer (MODIS) data on alpine sites, validated contemporaneous fine-resolution Advanced Spaceborne Thermal Emission Reflection Radiometer (ASTER) The results showed only outperformed but also yielded higher maximum theoretical areas. While providing general assessment framework obtained inter-comparison exercise effective solution overcome errors intrinsic coarse

参考文章(30)
Yoram J. Kaufman, Richard G. Kleidman, Dorothy K. Hall, J. Vanderlei Martins, Jonathan S. Barton, Remote sensing of subpixel snow cover using 0.66 and 2.1 μm channels Geophysical Research Letters. ,vol. 29, pp. 28-1- 28-4 ,(2002) , 10.1029/2001GL013580
F. Wang, Fuzzy supervised classification of remote sensing images IEEE Transactions on Geoscience and Remote Sensing. ,vol. 28, pp. 194- 201 ,(1990) , 10.1109/36.46698
Hugh Eva, Eric F. Lambin, Remote Sensing of Biomass Burning in Tropical Regions: Sampling Issues and Multisensor Approach Remote Sensing of Environment. ,vol. 64, pp. 292- 315 ,(1998) , 10.1016/S0034-4257(98)00006-6
M MATSON, NOAA satellite snow cover data Global and Planetary Change. ,vol. 4, pp. 213- 218 ,(1991) , 10.1016/0921-8181(91)90095-E
V.V Salomonson, I Appel, Estimating fractional snow cover from MODIS using the normalized difference snow index Remote Sensing of Environment. ,vol. 89, pp. 351- 360 ,(2004) , 10.1016/J.RSE.2003.10.016
Stefan Wunderle, David Oesch, Florian Kuchen, Nando Foppa, Operational sub-pixel snow mapping over the Alps with NOAA AVHRR data Annals of Glaciology. ,vol. 38, pp. 245- 252 ,(2004) , 10.3189/172756404781814735
Jonathan H Smith, Stephen V Stehman, James D Wickham, Limin Yang, Effects of landscape characteristics on land-cover class accuracy Remote Sensing of Environment. ,vol. 84, pp. 342- 349 ,(2003) , 10.1016/S0034-4257(02)00126-8
José Luis Silván-Cárdenas, Lizhu Wang, Sub-pixel confusion-uncertainty matrix for assessing soft classifications Remote Sensing of Environment. ,vol. 112, pp. 1081- 1095 ,(2008) , 10.1016/J.RSE.2007.07.017
ANDREW R. HARRISON, RICHARD M. LUCAS, Multi-spectral classification of snow using NOAA AVHRR imagery International Journal of Remote Sensing. ,vol. 10, pp. 907- 916 ,(1989) , 10.1080/01431168908903930
Dorothy K. Hall, George A. Riggs, Vincent V. Salomonson, Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data Remote Sensing of Environment. ,vol. 54, pp. 127- 140 ,(1995) , 10.1016/0034-4257(95)00137-P