On efficient simulation of non-Newtonian flow in saturated porous media with a multigrid adaptive refinement solver

作者: Oleg Iliev , Daniela Vassileva , Dimitar Stoyanov , Willy Dörfler

DOI: 10.1007/S00791-008-0119-8

关键词:

摘要: Flow of non-Newtonian fluid in saturated porous media can be described by the continuity equation and generalized Darcy law. Here we discuss efficient solution resulting second order nonlinear elliptic equation. The is discretized finite volume method on a cell-centered grid. Local adaptive refinement grid introduced to reduce number unknowns. We develop special implementation, that allows us perform unstructured local conjunction with discretization. Two residual based error indicators are exploited criterion. Second accurate discretization fluxes interfaces between refined non-refined subdomains, as well boundaries Dirichlet boundary condition, presented here an essential part algorithm. A full approximation storage multigrid algorithm developed especially for above composite (coarse plus locally refined) approach. In particular, around result quadratic slave nodes multigrid-adaptive (MG-AR) Results from numerical various academic practice-induced problems performance solver discussed.

参考文章(22)
Raytcho Lazarov, Stanimire Tomov, A Posteriori Error Estimates for Finite Volume Element Approximations of Convection–Diffusion–Reaction Equations Computational Geosciences. ,vol. 6, pp. 483- 503 ,(2002) , 10.1023/A:1021247300362
P. S. Vassilevski, R. D. Lazarov, R. E. Ewing, Local refinement techniques for elliptic problems on cell-centered grids ,(1991)
Pieter Wesseling (Dr. Ir.), An Introduction to Multigrid Methods ,(1992)
I. Babuvška, W. C. Rheinboldt, Error Estimates for Adaptive Finite Element Computations SIAM Journal on Numerical Analysis. ,vol. 15, pp. 736- 754 ,(1978) , 10.1137/0715049
Carsten Carstensen, A posteriori error estimate for the mixed finite element method Mathematics of Computation. ,vol. 66, pp. 465- 476 ,(1997) , 10.1090/S0025-5718-97-00837-5
R. E. Bank, A. Weiser, Some a posteriori error estimators for elliptic partial differential equations Mathematics of Computation. ,vol. 44, pp. 283- 301 ,(1985) , 10.1090/S0025-5718-1985-0777265-X
J.Tinsley Oden, Mark Ainsworth, A Posteriori Error Estimation in Finite Element Analysis ,(2000)
Willy Dörfler, A convergent adaptive algorithm for Poisson's equation SIAM Journal on Numerical Analysis. ,vol. 33, pp. 1106- 1124 ,(1996) , 10.1137/0733054
D. Bai, A. Brandt, Local Mesh Refinement Multilevel Techniques SIAM Journal on Scientific and Statistical Computing. ,vol. 8, pp. 109- 134 ,(1987) , 10.1137/0908025