Delayed SIR Epidemic Models for Vector Diseases?

作者: Yasuhiro Takeuchi , Wanbiao Ma

DOI: 10.1007/978-3-540-34426-1_3

关键词:

摘要: The purpose of the chapter is to give a survey on recent researches SIR models with time delays for epidemics which spread in human population via vector. Based Hethcote model and Cooke’s SIS delay, we introduce constant size. Further, are modified such way that death rates three classes different. Finally, revised assume birth rate not independent total For all models, summarize known mathematical results stability equilibria permanence. We also some open problems our conjectures threshold an epidemic occur.

参考文章(35)
Shigui Ruan, Spatial-Temporal Dynamics in Nonlocal Epidemiological Models Biological and Medical Physics, Biomedical Engineering. pp. 97- 122 ,(2007) , 10.1007/978-3-540-34426-1_5
Horst R. Thieme, Mathematics in Population Biology ,(2003)
E. Beretta, G. I. Bischi, F. Solimano, Oscillations in a system with material cycling Journal of Mathematical Biology. ,vol. 26, pp. 143- 167 ,(1988) , 10.1007/BF00277730
Edoardo Beretta, Yasuhiro Takeuchi, Global stability of an SIR epidemic model with time delays Journal of Mathematical Biology. ,vol. 33, pp. 250- 260 ,(1995) , 10.1007/BF00169563
K. L. Cooke, P. van den Driessche, Analysis of an SEIRS epidemic model with two delays Journal of Mathematical Biology. ,vol. 35, pp. 240- 260 ,(1996) , 10.1007/S002850050051
H. L. Smith, Subharmonic bifurcation in an S-I-R epidemic model. Journal of Mathematical Biology. ,vol. 17, pp. 163- 177 ,(1983) , 10.1007/BF00305757
H.I. Freedman, S.G. Ruan, Uniform Persistence in Functional Differential Equations Journal of Differential Equations. ,vol. 115, pp. 173- 192 ,(1995) , 10.1006/JDEQ.1995.1011
Herbert W. Hethcote, Qualitative analyses of communicable disease models Mathematical Biosciences. ,vol. 28, pp. 335- 356 ,(1976) , 10.1016/0025-5564(76)90132-2