On the Global Geometric Structure of the Dynamics of the Elastic Pendulum

作者: Ioannis T. Georgiou

DOI: 10.1023/A:1008356204490

关键词:

摘要: We approach the planar elastic pendulum as a singular perturbation of to show that its dynamics are governed by global two-dimensional invariant manifolds motion. One is nonlinear and carries purely slow periodic oscillations. The other one, on hand, linear fast radial For sufficiently small coupling between angular degrees freedom, both orbitally stable up energy levels exceeding unstable equilibrium system. fixed value coupling, manifold bifurcates transversely create oscillations exhibiting transfer. Poincare sections iso-energetic reveal only motions near separatrix emanating from region exhibit

参考文章(22)
Hassan K. Khalil, John O'Reilly, Petar Kokotović, Singular Perturbation Methods in Control: Analysis and Design ,(1986)
C. C. Rupp, J. H. Laue, Shuttle/tethered satellite system JAnSc. ,vol. 26, pp. 1- 17 ,(1978)
K. Nipp, Invariant manifolds of singularly perturbed ordinary differential equations ZAMP Zeitschrift f�r angewandte Mathematik und Physik. ,vol. 36, pp. 309- 320 ,(1985) , 10.1007/BF00945464
IOANNIS T. GEORGIOU, IRA B. SCHWARTZ, THE SLOW INVARIANT MANIFOLD OF A CONSERVATIVE PENDULUM-OSCILLATOR SYSTEM International Journal of Bifurcation and Chaos. ,vol. 06, pp. 673- 692 ,(1996) , 10.1142/S0218127496000345
Hironori A. Fujii, Wakano Ichiki, Nonlinear Dynamics of the Tethered Subsatellite System in the Station Keeping Phase Journal of Guidance Control and Dynamics. ,vol. 20, pp. 403- 406 ,(1997) , 10.2514/2.4057
An Empirical Study of the Stability of Periodic Motion in the Forced Spring-Pendulum Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences. ,vol. 443, pp. 391- 408 ,(1993) , 10.1098/RSPA.1993.0152
Ernst Breitenberger, Robert D. Mueller, The elastic pendulum: A nonlinear paradigm Journal of Mathematical Physics. ,vol. 22, pp. 1196- 1210 ,(1981) , 10.1063/1.525030
Neil Fenichel, Geometric singular perturbation theory for ordinary differential equations Journal of Differential Equations. ,vol. 31, pp. 53- 98 ,(1979) , 10.1016/0022-0396(79)90152-9
A.F. Vakakis, R.H. Rand, Normal modes and global dynamics of a two-degree-of-freedom non-linear system—I. Low energies International Journal of Non-Linear Mechanics. ,vol. 27, pp. 861- 874 ,(1992) , 10.1016/0020-7462(92)90040-E
T. R. Kane, M. E. Kahn, On a Class of Two-Degree-of-Freedom Oscillations Journal of Applied Mechanics. ,vol. 35, pp. 547- 552 ,(1968) , 10.1115/1.3601249